Special Coverage

Home

Simplified Waterproofing of Aerogels

Silanization is performed in a single treatment at moderate temperature and pressure. A relatively simple silanization process has been developed for waterproofing or rewaterproofing aerogels, xerogels, and aerogel/tile composites, and other, similar low-density, highly microporous materials. Such materials are potentially attractive for a variety of applications — especially for thermal-insulation panels that are required to be thin and lightweight. Unfortunately, such materials are also hydrophilic and tend to collapse after adsorbing water from the air. Hence, an effective means of waterproofing is necessary to enable practical exploitation of aerogels and the like.

Posted in: Materials, Briefs, TSP

Read More >>

Improved Thermal-Insulation Systems for Low Temperatures

Efficient, robust insulation for soft vacuum. Improved thermal- insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low- temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric- power- transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam.

Posted in: Materials, Briefs, TSP

Read More >>

Stable, Thermally Conductive Fillers for Bolted Joints

A commercial structural epoxy [Super Koropon (or equivalent)] has been found to be a suitable filler material for bolted joints that are required to have large thermal conductances. The contact area of such a joint can be less than 1 percent of the apparent joint area, the exact value depending on the roughnesses of the mating surfaces. By occupying the valleys between contact peaks, the filler widens the effective cross section for thermal conduction. In comparison with prior thermal joint-filler materials, the present epoxy offers advantages of stability, ease of application, and —as a byproduct of its stability — lasting protection against corrosion. Moreover, unlike silicone greases that have been used previously, this epoxy does not migrate to contaminate adjacent surfaces. Because this epoxy in its uncured state wets metal joint surfaces and has low viscosity, it readily flows to fill the gaps between the mating surfaces: these characteristics affect the overall thermal conductance of the joint more than does the bulk thermal conductivity of the epoxy, which is not exceptional. The thermal conductances of metal-to-metal joints containing this epoxy were found to range between 5 and 8 times those of unfilled joints.

Posted in: Materials, Briefs, TSP

Read More >>

Antistatic Polycarbonate/Copper Oxide Composite

Surface resistance lies in the desired range. A composite material consisting of polycarbonate filled with copper oxide has been found to be suitable as an antistatic material. This material was developed to satisfy a requirement for an antistatic material that has a mass density less than that of aluminum and that exhibits an acceptably low level of outgassing in a vacuum.

Posted in: Materials, Briefs, TSP

Read More >>

Better VPS Fabrication of Crucibles and Furnace Cartridges

The choice of alloy composition and processing parameters is important. An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 °C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility.

Posted in: Materials, Briefs, TSP

Read More >>

Burn-Resistant, Strong Metal-Matrix Composites

Ceramic particulate fillers increase burn resistances and specific strengths of metals. Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers' purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres.

Posted in: Materials, Briefs

Read More >>

Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic

The explicit model predicts some quantities that a prior implicit model cannot. An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting. Heretofore, an implicit formulation has been used to model the pore pressure. The differences between explicit and implicit models can be illustrated with the theoretical solution for stress and strain in an RTG test. The equations for the explicit case are:

Posted in: Materials, Briefs

Read More >>

White Papers

It Takes Two: Benefits of Using Laser Beam Welding Together with Electron Beam Welding
Sponsored by Joining Technologies
The Ultimate Shaft-To-Hub Connection
Sponsored by Stoffel Polygon
Today’s Advanced Hose and Hydraulic Systems
Sponsored by Gates
Avoid the High Cost of Quality Failure
Sponsored by Arena Solutions
Future Advances in Body Electronics
Sponsored by Freescale
A New Paradigm for Mid-Lifecycle Design Changes
Sponsored by Sparton

White Papers Sponsored By: