Special Coverage

Soft Robot “Walks” on Any Terrain
Defense Advanced Research Projects Agency
Using Microwaves to Produce High-Quality Graphene
Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines

Wear-time Comparison of Three Pressure-sensitive Acrylic Skin Adhesives

This study’s aim was to quantify and understand the adhesive performance of acrylic pressure sensitive skin adhesives when used in a prototypical wearable device worn on the back of the arm.

Posted in: White Papers, White Papers, Coatings & Adhesives, Bio-Medical, Medical
Read More >>

Conformal Coatings Increase Reliability of Critical Aerospace/Defense Systems and Components

In the aerospace and defense industries, conformal coatings are used to protect components from the increasingly harsh environments in which they must operate. As technologies continue to advance, often becoming smaller and more complex and/or utilizing advanced materials in their design, many surface treatment options struggle to provide reliable protection. This Tech Talk examines Parylene conformal coatings and how they ensure the reliability of critical components when failure is not an option.

Posted in: Tech Talks, Coatings & Adhesives, Materials
Read More >>

Will shape memory polymers play a prominent role in non-aerospace applications?

This week's Question: A featured Tech Brief in today's INSIDER highlighted a shape memory polymer from Langley Research Center. Designed initially for morphing spacecraft, the material changes shape when temperature shifts; the thermosetting polymer than returns to its original form once normal conditions are reached. The technology may also have applications in self-deployable structures, smart armors, intelligent medical devices, and other various morphing structures. What do you think? Will shape memory polymers play a prominent role in non-aerospace applications?

Posted in: Question of the Week, Materials
Read More >>

Metal Finishing White Paper: Electropolishing to Improve Corrosion Protection

One of the most common applications for electropolishing is to enhance corrosion resistance on a wide variety of metal alloys, specifically stainless steel. Electropolishing is quickly becoming a replacement process for a long established treatment: Passivation. Passivation is a chemical process that has been used for years to help restore contaminated stainless steel to original corrosion specifications.

Posted in: White Papers, Aerospace, Manufacturing & Prototyping, Materials
Read More >>

Electric Field Activated Shape Memory Polymer Composite

Applications include intelligent medical devices, smart armor, turbine blade stabilization, and aircraft wing stabilization.

NASA’s Langley Research Center has developed a novel shape memory polymer (SMP) made from composite materials for use in morphing structures. In response to an external stimulus such as a temperature change or an electric field, the thermosetting material changes shape, but then returns to its original form once conditions return to normal. Through a precise combination of monomers, conductive fillers, and elastic layers, the NASA polymer matrix can be triggered by two effects — Joule heating and dielectric loss — to increase the response. The new material remedies the limitations of other SMPs currently on the market; namely, the slow stimulant response times, the strength inconsistencies, and the use of toxic epoxies that may complicate manufacturing. NASA has developed prototypes and now seeks a partner to license the technology for commercial applications.

Posted in: Briefs, Materials, Electric power, Product development, Heat treatment, Composite materials, Polymers, Smart materials
Read More >>

Strain-Detecting Composite Materials

These materials can be used in aerospace vehicles and aircraft, or in any application where monitoring total overload or localized strain is critical.

NASA Langley Research Center has developed a metallic material that can be embedded into structural alloys to enhance nondestructive evaluation (NDE) of a structure. Current NDE tools, such as eddy current probes and others, can have some difficulties detecting small flaws in certain materials and structures. Also, using them can be costly, time-consuming, and labor-intensive, often resulting in significant downtime in the case of examination of machinery and vehicles. This innovation is to embed particles that react to strain with easily detected acoustic emissions and change in magnetic properties.

Posted in: Briefs, Materials, On-board diagnostics, On-board diagnostics (OBD), On-board diagnostics, On-board diagnostics (OBD), Alloys, Composite materials, Non-destructive tests, Test equipment and instrumentation
Read More >>

Compositions Comprising Nickel-Titanium, Methods of Manufacture Thereof, and Articles Comprising the Same

These solid lubricant coatings provide reduced friction and wear to any lightly loaded sliding mechanism operating from cryogenic to 650 °C.

NASA's Glenn Research Center has developed high-temperature solid lubricant materials suitable for foil gas bearings that enable the commercialization of a broad array of revolutionary oil-free gas turbines, compressors, blowers, motors, and other rotating machines that can operate from cryogenic to redhot temperatures. These tribological (friction and wear) coatings and composite powder metallurgy material innovations have immediate and proven spinoff potential for high-temperature steam turbine control valves, exhaust gas recirculation (EGR) valves, articulating ducts and piping joints, and other industrial and aerospace applications.

Posted in: Briefs, Materials, Lubricants, Powder metallurgy, Nickel, Titanium, Tribology, Bearings
Read More >>

Preparation of Metal Nanowire Decorated Carbon Allotropes

This technology produces materials for a variety of applications in electronics, communications, catalysis, and optics.

NASA's Langley Research Center has created a new class of materials based on depositing nanometer-sized metal particles onto carbon allotropes. The method is scalable and relatively simple, and allows for control over the size and distribution of the metal particles in the substrate, adjusting the surface area to optimize specific thermal or electrical properties of the material. One promising nanocomposite material created consists of multi-walled carbon nanotubes (MWCNTs) decorated with metal particles dispersed in a polymer matrix. Ribbons, tubes, and moldings of the nanocomposite were found to have novel intrinsic electrical characteristics that enable tunable dielectric constants with low loss factors. The decoupling and independent control of the two fundamental parameters offer a class of materials with the potential for finely tailored electronic properties. The novel methods enable materials that show promise for a variety of applications in electronics, communications, catalysis, and optics.

Posted in: Briefs, Materials, Product development, Fabrication, Composite materials, Metals, Nanomaterials
Read More >>

In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

Utilizing the full mechanical capabilities of individual nanotubes is a primary research goal in nanotube reinforced nanocomposite materials. Practical use of these nanomaterials requires creating stable and strong linkages between nanotubes without sacrificing their mechanical advantage. Cross-linking between shells via electron beam irradiation and application of large compressive forces have been studied and offer a viable approach to improve tube-to-tube load transfer and hence, mechanical properties. However, these approaches result in unwanted mechanical degradation and have limitations in scale-up for their applications to macroscopic nanocomposite materials.

Posted in: Briefs, Materials, Architecture, Architecture, Composite materials, Nanomaterials
Read More >>

Negative Dielectric Constant Material Based on Ion Conducting Materials

NASA Langley Research Center has developed a novel negative dielectric constant material based on ion-conducting materials. A negative dielectric constant material is an essential key for creating metamaterials, or artificial negative index materials (NIMs). NIMs have generated great attention due to their unique and exotic electromagnetic properties, and could be used for unique optical and microwave applications, including new methods of electromagnetic cloaking and extremely lowloss communications.

Posted in: Briefs, Materials, Electromagnetic compatibility, Electromagnetic compatibility, Product development, Conductivity
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.