Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
Home

Non-Toxic Material Generates Electricity Through Heat, Cold Air

Imagine a body sensor powered by one's jewelry, or a cooking pan that charges a cell phone in a few hours.Using a combination of the chemical elements calcium, cobalt, and terbium, University of Utah researchers created an efficient, inexpensive and bio-friendly material that generates electricity through a thermoelectric process involving heat and cold air.

Posted in: News, Materials, Sensors

Read More >>

Researchers Craft New Material That Could Improve LED Screens

Researchers working at the Ultrafast Laser Lab at the University of Kansas successfully created a new bilayer material, with each layer measuring less than one nanometer in thickness. The new material, that someday could lead to more efficient and versatile light emission, was made by combining atomically thin layers of molybdenum disulfide and rhenium disulfide.

Posted in: News, ptb catchall, LEDs, Powering & Controlling LEDs, Materials, Optical Components, Optics, Photonics

Read More >>

Researchers Find 'Golden' Idea for New Wearables

Researchers at Missouri University of Science and Technology have developed a way to “grow” thin layers of gold on single crystal wafers of silicon, remove the gold foils, and use them as substrates on which to grow other electronic materials. The discovery could lead to new wearable developments, including a smartphone that conforms entirely to one's wrist.

Posted in: News, Materials

Read More >>

'Tougher-than-Metal' Hydrogels Support New Biomaterials

Scientists from Japan's Hokkaido University have created tough hydrogels combined with woven fiber fabric. The "fiber-reinforced soft composite" fabrics are highly flexible, stronger than metals, and can support a number of potential applications, including artificial ligaments and tendons subjected to load-bearing tension.

Posted in: News, Materials

Read More >>

Mechanical Metamaterials Can Block Symmetry of Motion

An artist’s rendering of mechanical metamaterials. (Credit: Cockrell School of Engineering) Engineers and scientists at the University of Texas at Austin and the AMOLF institute in the Netherlands have invented mechanical metamaterials that transfer motion in one direction while blocking it in the other. The material can be thought of as a mechanical one-way shield that blocks energy from coming in but easily transmits it going out the other side. The researchers developed the mechanical materials using metamaterials, which are synthetic materials with properties that cannot be found in nature.

Posted in: News, Materials, Motion Control

Read More >>

Light-Absorbent Material Keeps Buildings Cool

Engineers at the University of California San Diego have created a thin, flexible, light-absorbing material that absorbs more than 87 percent of near-infrared light. The technology could someday support the development of solar cells; transparent window coatings to keep cars and buildings cool; and lightweight shields that block thermal detection.

Posted in: News, Materials

Read More >>

Researchers Create Metallic Hydrogen

Nearly a century after it was theorized, scientists from Harvard University have created the first-ever sample of one of the rarest materials on the planet: metallic hydrogen. The atomic metallic hydrogen has a potentially wide range of applications, including as a room-temperature superconductor.

Posted in: News, Materials, Metals

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.