Special Coverage

Home

Metal Injection Molding Turns the Volume Up, and Down

When increased quantities of metal parts are needed, metal injection molding (MIM) is often a logical next step. Our free MIM white paper covers the multi-step process involved in molding metal parts, detailed technical specs needed for design, commonly used materials and a comparison to other metal-forming technologies like direct metal laser sintering and die casting.

Posted in: Materials, White Papers

Read More >>

Liquid Silicone Rubber Takes the Heat

Our comprehensive white paper on liquid silicone rubber provides a detailed look at the injection-molding process and offers guidelines to achieve better molded LSR parts. While there are some shared similarities to thermoplastic injection molding, LSR is a thermoset material with a unique set of design characteristics.

Posted in: Materials, White Papers

Read More >>

Synthetic Sapphire: Extreme Performer

Sapphire, the single crystal form of alumina (Al2O3), was first synthesized more than a century ago, but the most exciting advances associated with this versatile material are taking place today. Shaped by the dual forces of application demands and technological advances in the fabrication and finishing process, synthetic sapphire is often the material of choice for design engineers dealing with extreme conditions of high temperature, high pressure and harsh chemical environments.

Posted in: Materials, White Papers

Read More >>

Epoxies and Glass Transition Temperature

Gain a better understanding about glass transition temperature (Tg) and why it is one of many factors to consider for bonding, sealing, coating and encapsulation applications. In this paper, we explore how temperature impacts the performance of polymers, why glass transition temperature is significant, and how it is measured. Tg can be an extremely useful yardstick for determining the reliability of epoxies as it pertains to temperature.

Posted in: Materials, White Papers

Read More >>

Reliability Testing of GORE® Protective Vents in Telecommunication Enclosures

Premature failure of telecommunication equipment leads to network downtime, higher costs, increased maintenance and decreased brand loyalty. One of the most significant challenges for this equipment is withstanding the conditions of the environment in which it is installed.

Posted in: Materials, White Papers

Read More >>

A Room Temperature, Low-Stress Bonding Process to Reduce the Impact of Use Stress on a Sputtering Target Assembly

As semiconductor processing has moved to 300mm wafers, the size of deposition targets, including tungsten (W), tantalum (Ta), and molybdenum (Mo), has grown, and process complexity has increased as well. This added size and complexity contributes to the stress on a target assembly during the physical vapor deposition (PVD) process, and the target assembly’s ability to withstand this stress has a large effect on the resulting deposition rates, yields, and film properties. One of the major sources of stress is the coefficient of thermal expansion (CTE) mismatch between metal targets in semiconductor processes, such as tungsten (CTE of 4.5*10-6/°C), tantalum (6.5*10-6/°C), and molybdenum (5.1*10-6/°C) compared with their backing plates, which are typically made of aluminum (23*10-6/°C), brass (21.2*10-6/°C), or copper-chrome (17.6*10- 6/°C). Standard soldering and solid state joining processes have difficulty controlling stress produced by the CTE-mismatch. We will demonstrate how the NanoBond® process can be used to control stresses during the bonding and deposition processes. Modeling will be conducted to compare standard bonding processes to the NanoBond process, accounting for CTE mismatches.

Posted in: Materials, White Papers

Read More >>

Achieving High Reliability SAC Solder Joints via Min Doping

In this study, the reliability of low Ag SAC alloy doped with Mn (SACM) was evaluated under JEDEC drop, dynamic bending, thermal cycling, and cyclic bending test conditions and compared to eutectic SnPb, SAC105, and SAC305 alloys. SACM is a patent pending alloy consisting of 0.5-1% Ag, 0.5-1% Cu, <0.1% Mn. SACM alloy achieved a higher drop test and dynamic bending test reliability than SAC105 and SAC305, and exceeded SnPb for many test conditions. More significantly, SACM matched SAC305 in thermal cycling performance. In other words, the low cost SACM achieved a better drop test performance than the low Ag SAC alloys, plus the desired thermal cycling reliability of high Ag SAC alloys. The mechanism for high drop shock performance and high thermal cycling reliability can be attributed to a stabilized microstructure, with uniform distribution of fine IMC particles, presumably through the inclusion of Mn in the IMC. The cyclic bending results showed SAC305 to be the best and all lead-free alloys were equal or superior to SnPb. The reliability test results also showed that NiAu is a preferred surface finish for BGA packages over OSP.

Posted in: Materials, White Papers

Read More >>

White Papers

Windows CE Development for RISC Computers Made Easy
Sponsored by Sealevel
The Benefits of Integrated Video Management
Sponsored by Curtiss Wright
Force and Torque Measurement Traceability
Sponsored by Morehouse
Spherical Plain Bearing
Sponsored by AST Bearings
How to Avoid Bearing Corrosion
Sponsored by Kaydon
Overcome Challenges of Your Highly Constrained PCB Designs
Sponsored by Mentor Graphics

White Papers Sponsored By: