Special Coverage

Home

Hydrazine Absorbent/Detoxification Pad

This hydrazine-degrading pad has applications in hazardous-material emergency response situations. Lyndon B. Johnson Space Center, Houston, Texas A new chemistry was developed for existing hydrazine absorbent/detoxification pads. Enhancements include faster reaction rates, weight reduction, a color change that indicates spill occurrence, and another color change that indicates successful hydrazine degradation. The previous spill control pad, using copper oxide on the silica gel substrate as the reactant, affected only 50 percent degradation of hydrazine after 9 hours. The new prototypes have been found to degrade hydrazine from 95 to 99.9 percent in only 5 minutes, and to below detection limits within 90 minutes.

Posted in: Materials, Briefs, TSP

Read More >>

Nanotechnology Approach to Lightweight, Multifunctional Polyethylene Composite Materials

Potential uses include personal armor, implantable prosthetics, and cut-resistant fabrics such as gloves worn by chefs and scuba divers. Langley Research Center, Hampton, Virginia Of several ideas being pursued by NASA for the reduction of radiation dosage to astronauts, the use of ultra-high-molecular-weight polyethylene (UHMWPE)-based composite materials for both radiation shielding and micrometeorite shielding appears to be particularly appealing. UHMWPE has long been understood to provide superior radiation shielding following encounters with energetic nucleons due to its high hydrogen content. Meanwhile, impacts of micrometeorites with UHMWPE tend to vaporize it, rather than causing spallation of the shield material, which then creates additional potentially damaging micrometeorites. Less widely appreciated is the high specific strength of UHMWPE and UHMWPE fibers, which provide structural integrity to the composite. Amongst thermoplastics, UHMWPE has the highest impact strength and is also highly resistant to abrasion. Despite this highly appealing combination of properties, UHMWPE’s key mechanical properties can be improved by forming composites with other nanostructured materials, leading to further performance increases and weight reductions. Such composites will increase the ability of UHMWPE structures to withstand micrometeorite impacts and maintain the structural integrity of a pressurized environment.

Posted in: Materials, Briefs, TSP

Read More >>

Electrostrictive Polymers

These lightweight and durable materials enable sensing and actuation devices. Langley Research Center, Hampton, Virginia A new class of electroactive polymeric blend materials has been created that offers both sensing and actuation dual functionality. The blend is comprised of two components where one has sensing capability, and the other has actuating capability. These innovative materials provide significant field-induced strain, high mechanical output force, and exceptional strain energy density. These electrostrictive polymers are conformable, lightweight, and durable. The processing system to fabricate these polymers is simple and can be manipulated to control and optimize the materials’ mechanical and electrical properties.

Posted in: Materials, Briefs, TSP

Read More >>

Catalyst for Treatment and Control of Post-Combustion Emissions

This oxidation/reduction catalyst can be used in diesel and natural gas applications, and in nonautomotive pollution sources. Langley Research Center, Hampton, Virginia Emissions from fossil-fuel combustion contribute significantly to smog, acid rain, and global warming problems, and are subject to stringent environmental regulations. These regulations are expected to become more stringent as state and regional authorities become more involved in addressing these environmental problems. Better systems are needed for catalytic control.

Posted in: Materials, Coatings & Adhesives, Briefs, TSP

Read More >>

Thermally Activated Crack Healing Mechanism for Metallic Materials

A thin metallic film of a low-melting-temperature healing agent is used. Langley Research Center, Hampton, Virginia A thermally activated healing mechanism is proposed and experimentally validated to mitigate crack propagation damage in metallic materials. The protected structure is coated with a thin metallic film of a low-melting-temperature healing agent. To heal or mitigate crack damage, the structure is heated to the melting temperature of the healing agent, allowing it to flow into the crack opening. Once in the crack mouth, the healing agent has two benefits: (1) by adhering to the crack surfaces, the healing agent bridges the crack, reducing the amount of load at the crack tip; and (2) any voluminous substance in the crack mouth causes crack closure (premature crack-face contact during cyclic loading) that also reduces the crack-tip loading.

Posted in: Materials, Coatings & Adhesives, Briefs, TSP

Read More >>

Self-Healing Glass Sealants for Solid Oxide Fuel Cells and Electrolyzer Cells

Operational requirements are 600 to 1,000 °C for thousands of hours. John H. Glenn Research Center, Cleveland, Ohio A solid oxide fuel cell (SOFC) is an electrochemical device that converts chemical energy into electrical power. A solid oxide electrolyzer cell (SOEC) operates in a reverse mode of SOFC, and produces O2 and H2 gases. SOFCs are being developed for a broad range of applications including portable electronic devices, automobiles, power generation, and aeronautics. The salient features of SOFCs are all-solid construction and high-temperature electrochemical reaction-based operation, resulting in clean and efficient power generation from a variety of fuels. SOFCs of two different designs, tubular and planar, are currently under development. Planar SOFCs offer several advantages such as simple manufacturing and relatively short current path, resulting in higher power density and efficiency. However, planar SOFCs and SOECs require hermetic seals. Various glass and glass-ceramics based on borates, phosphates, and silicates are being examined for SOFC seals. Silicate glasses are expected to perform superior to the borate and phosphate glasses as sealing materials.

Posted in: Materials, Coatings & Adhesives, Briefs, TSP

Read More >>

Micromachined Thermopile Arrays with Novel Thermo-electric Materials

Goddard Space Flight Center, Greenbelt, Maryland Future missions to outer planets will have stringent limits on payload mass. Thermal imaging instruments to map planetary surfaces will be part of those payloads, and, consequently, will have to be compact and low mass. For thermal instruments, another key requirement will be state-of-the-art, highly sensitive detectors. Thermopiles are prime candidates for high-resolution thermal mapping in the far-infrared (17- to 250-μm wavelength) spectral range. Thermopile detector arrays can be made to be very lightweight and compact. Furthermore, they require very few ancillary components (e.g., readout electronics, optics, amplifiers), which can add to instrument volume and mass. The implementation of thermopiles on these missions is likely because they (1) generate an output voltage that is proportional to the incoming radiation within the spectral range being mapped; (2) do not require an electrical bias or an optical chopper; (3) have negligible 1/f noise; (4) are radiation hard; and (5) have a reported specific detectivity of 1 × 109 cm·Hz1/2/W at room temperature.

Posted in: Materials, Coatings & Adhesives, Briefs, TSP

Read More >>

White Papers

A New Paradigm for Mid-Lifecycle Design Changes
Sponsored by Sparton
SunWize Power Systems – Guidelines for Choosing the Right Product
Sponsored by SunWize
Today’s Advanced Hose and Hydraulic Systems
Sponsored by Gates
Fundamentals of Vector Network Analysis Primer
Sponsored by Rohde and Schwarz A and D
PICO Brochure
Sponsored by Nordson EFD
Prosthetic Hands Give Patients A New Feel For Life
Sponsored by HP

White Papers Sponsored By: