Special Coverage

Soft Robot “Walks” on Any Terrain
Defense Advanced Research Projects Agency
Using Microwaves to Produce High-Quality Graphene
Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines

Learning to Crawl: Origami Robot Moves Like an Earthworm

A new mechanical innovation unfolded this month at the University of Illinois at Urbana-Champaign as a team of engineers built a new kind of crawler robot. The wheel-less design takes inspiration from two unconventional sources: origami and the earthworm.

Posted in: News, Materials, Motion Control, Motors & Drives, Robotics
Read More >>

Harmonic Air Motor Offers Very High Efficiency

Currently available air motors have many advantages over electric motors. They are more compact, lighter-weight, instantly reversible without sparking, create no heat buildup, are undamaged by stalling or overloading, and supply extremely broad torque and speed range. Generally available commercial air motors, however, have only 5% to 20% of ideal efficiency.

Posted in: News, Motion Control, Motors & Drives
Read More >>

Robotic Gripper Cleans Up Space Debris

Currently there are about 500,000 pieces of human-made debris in space, orbiting our planet at speeds up to 17,500 miles per hour. This debris poses a threat to satellites, space vehicles, and astronauts aboard those vehicles. However, cleaning up the debris is problematic. For example, suction cups don’t work in a vacuum, and traditional sticky substances like tape are largely useless because the chemicals they rely on can’t withstand extreme temperature swings.

Posted in: News, Motion Control, Robotics
Read More >>

Wireless Magnetic Field Powers Folding Robots

A team of researchers at the Wyss Institute for Biologically Inspired Engineering and the John A. Paulson School of Engineering and Applied Sciences (SEAS) at Harvard University has created battery-free folding robots that are capable of complex, repeatable movements powered and controlled through a wireless magnetic field. The system requires only basic, passive electronic components on the robot to deliver an electric current, and the structure of the robot itself takes care of the rest.

Posted in: News, Motion Control, Robotics
Read More >>

Soft Robot “Walks” on Any Terrain

Traditional robots often feature isolated mechanical joints. These discrete components limit a rover’s ability to traverse sand, stone, and other challenging environments. A team at the University of California San Diego has demonstrated a more flexible option: a soft robot that lifts its legs over obstacles and operates on a variety of terrains. The 3D-printed quadrupedal technology may someday support search-and-rescue missions requiring intelligent navigation capabilities.

Posted in: Briefs, Motion Control, Automation, Sensors and actuators, Sensors and actuators, Terrain, Kinematics, Additive manufacturing, Robotics, Autonomous vehicles
Read More >>

High-Temperature Actuators Bend as They “Breathe”

The mechanical components are made from films that expand and contract as they let oxygen in and out.

Extreme temperatures are hard for mechanical components to endure without degrading. To address the problem, researchers at MIT worked with several other universities to develop a new way to make actuators that could be used in exceptionally hot environments.

Posted in: Briefs, Motion Control, Automation, Sensors and actuators, Sensors and actuators, Heat resistant materials, Materials properties, Test equipment and instrumentation
Read More >>

3D-Printed Tensegrity Object Can Change Shape

The technology creates a large, lightweight, strong object that can be flattened and then expanded to its full size when heated.

A team of researchers from the Georgia Institute of Technology has developed a way to use 3D printers to create objects capable of dramatic expansion. The technology could someday be used in applications ranging from space missions to biomedical devices. The new 3D-printed objects use tensegrity, a structural system of floating rods in compression and cables in continuous tension. The researchers fabricated the struts from shape memory polymers that unfold when heated.

Posted in: Briefs, Motion Control, Automation, Thermodynamics, Thermodynamics, Additive manufacturing, Fabrication, Materials properties, Polymers, Smart materials
Read More >>

Reduce Compressed Air Costs with Proper Air Cylinder Sizing

Choosing an air cylinder without a full understanding of how it will perform in a pneumatic circuit can have long lasting, costly consequences.

There may be no stronger ally of electrical power utilities than industrial size air compressors, as they drone on every day, taking atmospheric air and transforming it into useful energy. Countless kilowatt hours are gobbled up in a mechanical conversion of electrical power into pneumatic power, a process that is wickedly inefficient, with one horsepower of pneumatic energy costing six times as much to generate when compared to one horsepower of electrical energy. Nevertheless, with its tremendous versatility, efficiency, and widespread use throughout many sectors, compressed air provides a clean, reliable source of pneumatic power that has a value outweighing its cost to produce.

Posted in: Articles, Motion Control, Sensors and actuators, Sensors and actuators, Electric power, Hydraulic and pneumatic hybrid power, Compressors, Pneumatic systems
Read More >>

Energy Management Through Direct Drive Servo Technology

Inertia ratio provides a determinate measure for optimizing energy utilization of a servo motor during a machine’s design.

Direct drive servo motor and drive technology has many advantages. It reduces an axis’ parts count, mechanical losses, and often its objectionable noise. What’s more, it also increases the machine’s efficiency, lowering operation cost for the user due to its inertia ratio as compared to the more common mechanically advantaged multi-body axis designs. Reducing the mechanical transmission components (gearboxes, timing belts, pulleys, cams, lead screws, etc.) between the motor and its load is only part of the savings.

Posted in: Articles, Motion Control, Engine efficiency, Rotary engines
Read More >>

Smart Actuators Add Brains to Automation Brawn

Integrated electronics let smart actuators perform enhanced control functions that were previously external, such as switching, position feedback, and system diagnostics.

Actuators have always been on the frontline of automation, providing the “push and pull” that extends human capabilities to operate everything from delicate pick-and-place applications to 10-ton agricultural combines. Now, as the industrial world becomes increasingly digitized and connected, a new generation of actuators is fulfilling that role with more intelligence, simplicity, and economy, while overcoming increasingly challenging environmental conditions.

Posted in: Articles, Motion Control, Electronic equipment, Sensors and actuators, Switches, Electronic equipment, Sensors and actuators, Switches, Automation, Robotics
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.