Special Coverage

Lightweight, Flexible Thermal Protection System for Fire Protection
High-Precision Electric Gate for Time-of-Flight Ion Mass Spectrometers
Polyimide Wire Insulation Repair System
Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine
Aerofoam
Wet Active Chevron Nozzle for Controllable Jet Noise Reduction
Magnetic Relief Valve
Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Home

System Harvests Energy from Automotive Shock Absorbers

The energy harvesting device focuses on the car’s suspension – specifically, the shock absorbers. Boosting the fuel efficiency of motor vehicles by “harvesting” the energy generated by their shock absorbers and feeding it back into batteries or electrical systems such as air conditioning has become a major goal in automotive engineering. A University of Huddersfield (UK) researcher has designed a new system and built a prototype that is ready for real-world testing.

Posted in: News, Energy Harvesting, Motion Control

Read More >>

Pedal Position Sensing in Heavy-Duty Vehicles

Pedal position detection is nothing new when it comes to operation of heavy duty equipment. However, the age old system operation of mechanical linkages between the pedal and the engine just might be coming to an end. New sensor technology is now enabling non-contact, drive-by-wire that can reduce total system cost while standing up to the harsh environments of off highway equipment.

Posted in: White Papers, Mechanical Components, Fluid Handling, Motion Control, Data Acquisition, Sensors

Read More >>

Magnetic Relief Valve

A side view of the relief valve sections (left), and a view inside the relief valve (right). A magnetically retained pressure-relief valve enables quick-open on/off operation when overpressure is reached.Inventors at NASA’s Kennedy Space Center have developed a magnetically retained, fast-response pressure relief valve that is designed to fully open at precise cracking pressures, and that operates in a fully open/fully closed manner. The use of a magnetically controlled relief valve, as opposed to a spring-based relief valve, enables quick-open on/off relief operation when overpressure is reached. This is due to the rapid decay of the magnetic field as the fluid medium pushes the valve poppet to an open position. Spring-based relief valves require increasing pressure and force to continually compress the spring and open the relief valve. This requirement greatly complicates the design of a system relief mechanism. A magnetic relief valve reduces these design complexities by eliminating the spring.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Work Piece Cleaning Apparatus and Method with Pulsating Mixture of Liquid and Gas

NASA Goddard’s scientists have developed a novel, volatile organic compound (VOC)-free system for cleaning tubing and piping that significantly reduces cost and carbon consumption. The innovative technology enables the use of deionized water in place of costlier isopropyl alcohol (IPA), and does not create any waste for which costly disposal is usually required. It uses nitrogen bubbles in water, which act as a scrubbing agent to clean equipment. The cleaning system quickly and precisely removes all foreign matter from tubing and piping.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Safety Drain System for Fluid Reservoir

Researchers at NASA’s Marshall Space Flight Center have developed a system that reduces the entrapment risks associated with a pool or spa’s recirculation drain. The technology prevents hazards caused by suction forces on the body, hair, clothing, or other articles. Employing a novel configuration of drainage openings along with parallel paths for water flow, the system redistributes force over a much larger area, minimizing suction force at any localized area. With more efficient drainage and recirculation, the device improves performance, increases safety, and decreases operating costs. The technology can also provide thorough chemical mixing, which improves processes in systems and allows continued operation in the event of localized debris clogging a portion of the recirculation area. All of these benefits come without a protrusive drain cover, leaving the area safe and aesthetically pleasing.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Temperature-Compensating PMT Housing

Shrinking or contracting light guides is a problem when photomultiplier tubes (PMTs) are glued to the guides. If there is no way to allow movement of the PMTs, when the temperature goes down, the light guide contracts and breaks the glue joint. The PMTs cannot be left loose to rattle around inside the detector. They must be held precisely, yet gently, and allowed to move.

Posted in: Briefs, Mechanical Components, Mechanics, Fluid Handling

Read More >>

Choosing Stepper- or Servo-Driven Actuators to Replace Air Cylinders

Pneumatic (air) cylinders are widely used in industrial automation due to their low per-axis cost and high-speed/force capabilities. They have a long history of being popular workhorses in the automation industry. However, there are many reasons to use electric actuators in place of air cylinders: reduced machine downtime, reduced energy consumption, increased precision, and increased speed. In addition, electric actuators can be powered by servo or stepper motors, in conjunction with a control device, to provide linear motion. Advantages of Electric Linear ActuatorsReduced downtime. Electric linear actuators (whether screw- or belt-driven) are very low-maintenance. Regreasing may be the only regular maintenance necessary, and many screw-driven models are lubricated for the life of the actuator.

Posted in: Articles, Aerospace, Motion Control

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.