Special Coverage

Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing

3D Printed Tensegrity Object Can Change Shape

Researchers at Georgia Tech 3D printed an object made with tensegrity, a structural system of floating rods in compression and cables in continuous tension. (Credit: Rob Felt)

A team of researchers from the Georgia Institute of Technology has developed a way to use 3D printers to create objects capable of shape change. The objects use tensegrity, a structural system of floating rods in compression and cables in continuous tension. The researchers fabricated the struts from shape memory polymers that unfold when heated. The technology could someday be used in applications ranging from space missions to biomedical devices.

Posted in: News, Manufacturing & Prototyping, Mechanical Components, Motion Control

Self-Learning Robot Hands Adapt to Grasp Objects

By connecting tactile sensors with intelligent software, the robot hands control their strength for a fine-touch grip that won’t damage delicate objects. (Bielefeld University)

A new grasp system with robotic hands works without previously knowing the characteristics of objects. The system, which learns by trial and error, was developed by researchers at Bielefeld University in Bielefeld, Germany. It features two hands that are based on human hands in terms of both shape and mobility. The robot brain for the hands must learn how everyday objects like pieces of fruit or tools can be distinguished based on their color or shape, as well as what matters when attempting to grasp the object; for example, a banana can be held, and a button can be pressed. The system learns to recognize such possibilities as characteristics, and constructs a model for interacting with and re-identifying the object.

Posted in: News, Motion Control, Positioning Equipment, Automation, Robotics

Crawling Robot is Powered by Moisture

Researchers used flash-treated graphene oxide to create a crawler that moved when humidity was increased. Switching the humidity off and on several times induced the crawler to move 3.5 millimeters in 12 seconds, with no external energy supply. (Credit: Jilin University)

Using an off-the-shelf camera flash, researchers at Jilin University, China, turned an ordinary sheet of graphene oxide into a material that bends when exposed to moisture. They then used this material to make a spider-like crawler and claw robot that move in response to changing humidity, without the need for any external power.

Posted in: News, Materials, Motion Control, Robotics

Modular Climbing Robot Splits into Multiple Explorer Bots

A prototype of the Detachable Compliant Modular Robot (DCMR).

Researchers from the Robotics Research Centre at the International Institute of Technology – Hyderabad (IIIT-H), have developed a stair and obstacle climbing robot that can disassemble itself into smaller robots, and then reassemble back into one device. As a composite system, the Detachable Compliant Modular Robot (DCMR) can climb steep obstacles and staircases, and explore uneven terrain. When it detaches into multiple robots, it can explore cramped spaces, traverse flat terrain, and behave as a Multi Agent System (MAS).

Posted in: News, Motion Control, Robotics

Actuated Smartwatch Moves in Five Directions

The Cito prototype rotates, hinges, translates, rises, and orbits to add convenience for smartwatch users. (Credit: Jun Gong)

In an effort to make digital smartwatches more convenient for users, researchers at Dartmouth College and the University of Waterloo have produced a prototype watch face named Cito that moves in five different directions. With the ability to rotate, hinge, translate, rise, and orbit, the model improves functionality and addresses some of the limitations of today’s fixed-face watches.

Posted in: News, Motion Control

Mechanical Actuators Bend as They “Breathe”

The equipment used for testing the new materials. (Credit: MIT)

Extreme temperatures can severely strain a mechanical component because its material may have trouble enduring the heat without degrading. To address the problem, researchers at MIT developed a new material that expands and contracts as it lets oxygen in and out. The result is a new way to make actuators that could be used in extremely hot environments.

Posted in: News, Materials, Mechanical Components, Motion Control

Interface Simplifies Remote Robot Operation

Georgia Institute of Technology researchers created a new interface to remotely control robots that is much simpler and more efficient than current techniques. The user simply points and clicks on an item, then chooses a grasp. The robot does the rest of the work.

The traditional interface for remotely operating robots employs a computer screen and mouse to independently control six degrees of freedom, turning three virtual rings and adjusting arrows to get the robot into position to grab items or perform a specific task. But for someone who isn’t an expert, the ring-and-arrow system is cumbersome and error-prone. It’s not ideal, for example, for older people trying to control assistive robots at home.

Posted in: News, Motion Control, Robotics, Software

Origami-Inspired Robot Can Ride with a Rover

The Pop-Up Flat Folding Explorer Robot (PUFFER) that’s in development at NASA’s Jet Propulsion Laboratory in Pasadena, CA, was inspired by origami. It travels with a rover, and its lightweight design can flatten itself, tucking in its wheels and crawling into places rovers can’t fit.

Posted in: News, Motion Control, Robotics

Mechanical Metamaterials Can Block Symmetry of Motion

An artist’s rendering of mechanical metamaterials. (Credit: Cockrell School of Engineering)

Engineers and scientists at the University of Texas at Austin and the AMOLF institute in the Netherlands have invented mechanical metamaterials that transfer motion in one direction while blocking it in the other. The material can be thought of as a mechanical one-way shield that blocks energy from coming in but easily transmits it going out the other side. The researchers developed the mechanical materials using metamaterials, which are synthetic materials with properties that cannot be found in nature.

Posted in: News, Materials, Motion Control

Exo-Brake “Parachute” to Enable Safe Return for Small Spacecraft

Engineers pack the Technology Education Satellite with the Exo-Brake payload. Almost 4 square feet in cross section (0.35 square meters), the Exo-Brake is made of Mylar and is controlled by a hybrid system of mechanic struts and flexible cord. (Credit: NASA Ames/Dominic Hart)

Engineers at NASA’s Ames Research Center in Moffett Field, CA have been testing its Exo-Brake technology as a simple design that promises to help bring small payloads back through Earth’s atmosphere unharmed. An Exo-Brake is a tension-based, flexible braking device resembling a cross-parachute that deploys from the rear of a satellite to increase the drag. It is a de-orbit device that replaces the more complicated rocket-based systems that would normally be employed during the de-orbit phase of re-entry.

Posted in: News, Aerospace, Motion Control

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.