Special Coverage

Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing

Sizing and Selecting Linear Motion Systems

The LOSTPED acronym can help designers avoid mistakes by reminding them to consider all the interrelated factors during system development and specification.

Virtually all manufacturing processes incorporate some type of linear motion. A common mistake that designers make when sizing and selecting linear motion systems is to overlook critical application requirements in the final system. This can lead to redesigns, and may also result in an over-engineered system that is costlier and less effective than desired. “LOSTPED” is a simple acronym that guides the designer in gathering the information needed to specify the appropriate linear motion components or modules in any given application.

Posted in: Articles, Motion Control

Piezo Technology in Pneumatic Valves

Solenoid devices are the standard for electrically controlled pneumatic valves. However, piezo valves offer many advantages over their solenoid counterparts, and open entirely new areas of application.

Pneumatic valves made with piezo technology offer many advantages. They are small, lightweight, extremely precise, durable, fast, and save energy. Piezo valves do not need energy to maintain a switching status, and therefore generate almost no heat. What's more, piezo valves can potentially be operated without any noise. Another key advantage is that they always work proportionally.

Posted in: Articles, Motion Control

Adding Simple Vision Systems to Collaborative Robots

Upfront evaluation can help determine if a vision system is the best solution for an automation application.

Adding vision to a collaborative robot can open a world of possibilities for automation applications. With a vision system, a robot can inspect parts, check specific features of a part, recognize a part to pick it up, count items, adjust its path using visual feedback, color sort, and so on. The breadth of applications requires careful consideration to ensure selection of the right technology for the job.

Posted in: Articles, Motion Control

Scanning Performance of Air Bearing Equipped Precision Motion Systems

Scanning is a common technique in applications ranging from high-resolution microscopy to industrial material processing. Scanning involves moving either a workpiece or an optic at a constant velocity while a reading or writing operation takes place. Air bearings are used for both purposes, especially when high precision and reliability are vital. While the physical act of writing an image or capturing an image differ by application and industry, all such applications share a common requirement — maintaining a constant velocity.

Posted in: Articles, Motion Control, Imaging and visualization, Automation, Bearings, Reliability

Four Ways to improve Production by Understanding the Physics of Servos

There is always a need to increase production in automation applications. Sometimes achieving improvements requires breaking the process down to its fundamental basics. The science behind the technology of servo-based motion control systems should be considered when attempting to eliminate inefficiencies. Four fundamentals to examine are inertia, resonance, vibration suppression, and regeneration.

Posted in: Articles, Motion Control, Finite element analysis, Electronic control systems, Automation, Productivity

Converting from Hydraulic Cylinders to Electric Actuators

Hydraulics are rugged and deliver a low cost per unit of force, but electric rod actuators have attained higher force capacities while becoming more flexible, precise, and reliable.

Advances in motion control technology have prompted a new debate — do hydraulic cylinders or electric linear actuators offer the best solution for a linear motion application? Hydraulic cylinders provide high force at an affordable cost. Hydraulics are rugged, relatively simple to deploy, and deliver a low cost per unit of force. However, electric rod actuators (electric cylinders), particularly those with roller screws, have attained increasingly higher force capacities while becoming more flexible, precise, and reliable.

Posted in: Articles, Motion Control, Electrical systems, Flight control actuators, Hydraulic control, Reliability

The Basics of Encoder Selection

Many small motor applications, such as robotics, industrial equipment, and consumer products, employ digital incremental encoders for feedback sensing. Encoder selection is therefore an important part of the system design process. Choosing the best encoder for the job requires knowledge of the most important encoder properties as well as the application’s control requirements.

Posted in: Articles, Motion Control, Electronic control systems, Integrated circuits, Supplier assessment

Servo Couplings for High-Tech Systems

Proper coupling ensures a design will meet performance requirements and have a long, trouble-free life.

Couplings are a critical part of system performance in high-tech applications, yet they are often one of the last components to be specified. Selecting the proper coupling ensures the equipment will meet performance requirements and have a long, trouble-free life. Poor coupling selection can lead to high maintenance costs, frequent downtime, and imprecise positioning.

Posted in: Articles, Joining & Assembly, Motion Control, Power Transmission, Sensors and actuators, Materials properties, Fittings, Parts

Metallic Glass Shatters Gear Limitations

Gears play an essential role in precision robotics, and they can become a limiting factor when the robots must perform in space missions. In particular, the extreme temperatures of deep space pose numerous problems for successful gear operation. At NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, technologist Douglas Hofmann and his collaborators aim to bypass the limitations of existing steel gears by creating gears from bulk metallic glass (BMG).

Posted in: Articles, Aerospace, Manufacturing & Prototyping, Metals, Mechanical Components, Motion Control, Motors & Drives, Power Transmission, Robotics, Robotics, Alloys, Glass, Gears, Durability, Spacecraft

Adding SCADA to a Hydraulic Power Unit

With an increased focus on plant productivity and equipment reliability, Supervisory Control and Data Acquisition (SCADA) systems have become vital tools to reduce downtime while increasing asset reliability in hydraulic systems. A SCADA system is a computer system that essentially gathers and analyzes real-time data.

Posted in: Articles, Fluid Handling, Motion Control, Computer software and hardware, Hydraulic and pneumatic hybrid power, Productivity, Hydraulic control

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.