Special Coverage

Home

Windows®-Based Software Models Cyclic Oxidation Behavior

Oxidation of high-temperature aerospace materials is a universal issue for combustion-path components in turbine or rocket engines. In addition to the question of the consumption of material due to growth of protective scale at use temperatures, there is also the question of cyclic effects and spallation of scale on cooldown. The spallation results in the removal of part of the protective oxide in a discontinuous step and thereby opens the way for more rapid oxidation upon reheating. In experiments, cyclic oxidation behavior is most commonly characterized by measuring changes in weight during extended time intervals that include hundreds or thousands of heating and cooling cycles. Weight gains occurring during isothermal scale-growth processes have been well characterized as being parabolic or nearly parabolic functions of time because diffusion controls reaction rates. In contrast, the net weight change in cyclic oxidation is the sum of the effects of the growth and spallation of scale. Typically, the net weight gain in cyclic oxidation is determined only empirically (that is, by measurement), with no unique or straightforward mathematical connection to either the rate of growth or the amount of metal consumed. Thus, there is a need for mathematical modeling to infer spallation mechanisms.

Posted in: Briefs, TSP

Read More >>

MPT Prediction of Aircraft Engine Fan Noise

A collection of computer programs has been developed that implements a procedure for predicting multiple- puretone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise — MPTs. Stagger angle differences as small as 0.1° can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an "unstarted" mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user's computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user's file format using the API. The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh, the second file defines the geometry variations of each blade in a complete fan. Superposition is used to predict the spectra resulting from the geometric variations.

Posted in: Briefs

Read More >>

Managing an Archive of Images

The SSC Multimedia Archive is an automated electronic system to manage images, acquired both by film and digital cameras, for the Public Affairs Office (PAO) at Stennis Space Center (SSC). Previously, the image archive was based on film photography and utilized a manual system that, by today's standards, had become inefficient and expensive. Now, the SSC Multimedia Archive, based on a server at SSC, contains both catalogs and images for pictures taken both digitally and with a traditional, film-based camera, along with metadata about each image. After a "shoot," a photographer downloads the images into the database. Members of the PAO can use a Web-based application to search, view and retrieve images, approve images for publication, and view and edit metadata associated with the images. Approved images are archived and cross-referenced with appropriate descriptions and information. Security is provided by al-lowing administrators to explicitly grant access privileges to personnel to only access components of the system that they need to (i.e., allow only photographers to upload images, only PAO designated employees may approve images).

Posted in: Briefs

Read More >>

Document Concurrence System

The Document Concurrence System is a combination of software modules for routing users expressions of concurrence with documents. This system enables determination of the current status of concurrences and eliminates the need for the prior practice of manually delivering paper documents to all persons whose approvals were required. This system runs on a server, and participants gain access via personal computers equipped with Web-browser and electronic-mail software. A user can begin a concurrence routing process by logging onto an administration module, naming the approvers and stating the sequence for routing among them, and attaching documents. The server then sends a message to the first person on the list. Upon concurrence by the first person, the system sends a message to the second person, and so forth. A person on the list indicates approval, places the documents on hold, or indicates disapproval, via a Web-based module. When the last person on the list has concurred, a message is sent to the initiator, who can then finalize the process through the administration module. A background process running on the server identifies concurrence processes that are overdue and sends reminders to the appropriate persons.

Posted in: Briefs

Read More >>

Forensic Analysis of Compromised Computers

Directory Tree Analysis File Generator is a Practical Extraction and Reporting Language (PERL) script that simplifies and automates the collection of information for forensic analysis of compromised computer systems. During such an analysis, it is sometimes necessary to collect and analyze information about files on a specific directory tree. Directory Tree Analysis File Generator collects information of this type (except information about directories) and writes it to a text file. In particular, the script asks the user for the root of the directory tree to be processed, the name of the output file, and the number of subtree levels to process. The script then processes the directory tree and puts out the aforementioned text file. The format of the text file is designed to enable the submission of the file as input to a spreadsheet program, wherein the forensic analysis is performed. The analysis usually consists of sorting files and examination of such characteristics of files as ownership, time of creation, and time of most recent access, all of which characteristics are among the data included in the text file.

Posted in: Briefs, TSP

Read More >>

Software for Probabilistic Risk Reduction

A computer program implements a methodology, denoted probabilistic risk reduction, that is intended to aid in planning the development of complex software and/or hardware systems. This methodology integrates two complementary prior methodologies: (1) that of probabilistic risk assessment and (2) a risk-based planning methodology, implemented in a prior computer program known as Defect Detection and Prevention (DDP), in which multiple requirements and the beneficial effects of risk-mitigation actions are taken into account. The present methodology and the software are able to accommodate both process knowledge (notably of the efficacy of development practices) and product knowledge (notably of the logical structure of a system, the development of which one seeks to plan). Estimates of the costs and benefits of a planned development can be derived. Functional and non-functional aspects of software can be taken into account, and trades made among them. It becomes possible to optimize the planning process in the sense that it becomes possible to select the best suite of process steps and design choices to maximize the expectation of success while remaining within budget.

Posted in: Briefs, TSP

Read More >>

Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used "as is" or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

Posted in: Briefs, TSP

Read More >>

White Papers

Differential Nonlinearity in Analog Measurements
Sponsored by sealevel
Antenna Basics
Sponsored by rohde and schwarz a and d
All About Aspheric Lenses
Sponsored by edmund optics
Fiber Optic Rotary Joints Add a Spin to Sensing, Mobile, and Robotic Fiber Systems
Sponsored by Princetel
Multi-Material, Multi-Color 3D Printing Creates New Possibilities
Sponsored by stratasys
Selecting Miniature Motors for your Medical Devices
Sponsored by Portescap

White Papers Sponsored By: