Special Coverage

Lightweight, Flexible Thermal Protection System for Fire Protection
High-Precision Electric Gate for Time-of-Flight Ion Mass Spectrometers
Polyimide Wire Insulation Repair System
Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine
Aerofoam
Wet Active Chevron Nozzle for Controllable Jet Noise Reduction
Magnetic Relief Valve
Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Home

Simulating Responses of Gravitational-Wave Instrumentation

Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay- interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequalarm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.

Posted in: Briefs, TSP, Software

Read More >>

SOFTC: A Software Correlator for VLBI

SOFTC is an advanced software implementation of a signal correlator for verylong- baseline interferometry (VLBI) for measuring positions of natural celestial objects and distant spacecraft. Because of increases in processing speeds of general- purpose computers, software VLBI correlators have become viable alternatives to hardware ones. The input to SOFTC consists of digitized samples of raw VLBI-antenna received-signal voltages. Optionally, SOFTC also tracks calibration tones superimposed on the received signals. The outputs of SOFTC are (1) phases and amplitudes as functions of time and frequency for cross-correlated received signals and (2) phases and amplitudes as functions of time, station, and tone number for the calibration tones. SOFTC was created to be as accurate as possible, capable of processing essentially any VLBI data, pass strong debugging tests, have a simple user interface, and have no platform dependencies. SOFTC is written modularly in the C programming language. The great advantage of implementing a correlator in software, in contradistinction to hardware, is that it becomes relatively easy and much less expensive and time-consuming to adapt, modify, improve, and update the correlator.

Posted in: Briefs, TSP, Software

Read More >>

Program for Analyzing Flows in a Complex Network

Generalized Fluid System Simulation Program (GFSSP) version 4 is a generalpurpose computer program for analyzing steady-state and transient flows in a complex fluid network. [GFSSP version 2.01 was reported in a prior issue of NASA Tech Briefs.] The program is capable of modeling compressibility, fluid transients (e.g., water hammers), phase changes, mixtures of chemical species, and such externally applied body forces as gravitational and centrifugal ones. A graphical user interface enables the user to interactively develop a simulation of a fluid network consisting of nodes and branches. The user can also run the simulation and view the results in the interface. The system of equations for conservation of mass, energy, chemical species, and momentum is solved numerically by a combination of the Newton-Raphson and successive-substitution methods. The program includes subroutines that compute thermodynamic and thermophysical properties for 12 fluids and is integrated with a commercial program that gives thermodynamic properties of 36 fluids. Eighteen different options are provided for modeling momentum sources or sinks in the branches. Additional capabilities, including new resistance options, new fluids, and non-linear boundary conditions, can be added by means of subroutines. An audio-visual training CD (compact disk) containing lectures, demonstration of graphical user interface, and tutorial problems is available for learning to use the program.

Posted in: Briefs, TSP, Software

Read More >>

Computing Spacecraft Solar-Cell Damage by Charged Particles

General EQFlux is a computer program that converts the measure of the damage done to solar cells in outer space by impingement of electrons and protons having many different kinetic energies into the measure of the damage done by an equivalent fluence of electrons, each having kinetic energy of 1 MeV. Prior to the development of General EQFlux, there was no single computer program offering this capability: For a given type of solar cell, it was necessary to either perform the calculations manually or to use one of three Fortran programs, each of which was applicable to only one type of solar cell. The problem in developing General EQFlux was to rewrite and combine the three programs into a single program that could perform the calculations for three types of solar cells and run in a Windows environment with a Windows graphical user interface. In comparison with the three prior programs, General EQFlux is easier to use.

Posted in: Briefs, Software

Read More >>

Automated Camera Calibration

Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in threedimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera’s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target’s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process. ACAL consists of three modules:

Posted in: Briefs, TSP, Software

Read More >>

Program Predicts Performance of Optical Parametric Oscillators

A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.

Posted in: Briefs, TSP, Software

Read More >>

Database of Properties of Meteors

A database of properties of meteors, and software that provides access to the database, are being developed as a contribution to continuing efforts to model the characteristics of meteors with increasing accuracy. Such modeling is necessary for evaluation of the risk of penetration of spacecraft by meteors. For each meteor in the database, the record will include an identification, date and time, radiant properties, ballistic coefficient, radar cross section, size, density, and orbital elements. The property of primary interest in the present case is density, and one of the primary goals in this case is to derive densities of meteors from their atmospheric decelerations. The database and software are expected to be valid anywhere in the solar system. The database will incorporate new data plus results of meteoroid analyses that, heretofore, have not been readily available to the aerospace community. Taken together, the database and software constitute a model that is expected to provide improved estimates of densities and to result in improved risk analyses for interplanetary spacecraft. It is planned to distribute the database and software on a compact disk.

Posted in: Briefs, Software

Read More >>

White Papers

Key Considerations for Powertrain HIL Test
Sponsored by National Instruments
Algorithms for Change Point Analysis
Sponsored by Numerical Algorithms Group
Avoid the Dark Side of Quality Failure
Sponsored by Arena Solutions
Force Transfer Machines
Sponsored by Morehouse
Epoxy-based Hermetic Feedthroughs Boost Switchgear Reliability
Sponsored by Douglas Electrical Components
Hermetic Feedthroughs Safeguard Mission-Critical Electronics
Sponsored by Douglas Electrical Components

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.