Special Coverage

Home

Decision Support for Emergency Operations Centers

The Flood Disaster Mitigation Decision Support System (DSS) is a computerized information system that allows regional emergency-operations government officials to make decisions regarding the dispatch of resources in response to flooding. The DSS implements a real-time model of inundation utilizing recently acquired lidar elevation data as well asreal-time data from flood gauges, and other instruments within and upstream of an area that is or could become flooded. The DSS information is updated as new data become available. The model generates real-time maps of flooded areas and predicts flood crests at specified locations. The inundation maps are overlaid with information on population densities, property values, hazardous materials, evacuation routes, official contact information, and other information needed for emergency response. The program maintains a database and a Web portal through which real-time data from instrumentation are gathered into the database. Also included in the database is a geographic information system, from which the program obtains the overlay data for areas of interest as needed. The portal makes some portions of the database accessible to the public. Access to other portions of the database is restricted to government officials according to various levels of authorization. The Flood Disaster Mitigation DSS has been integrated into a larger DSS named REACT (Real-time Emergency Action Coordination Tool), which also provides emergency operations managers with data for any type of impact area such as floods, fires, bomb emergencies, and the like.

Posted in: Briefs

Read More >>

Code for Analyzing and Designing Spacecraft Power System Radiators

GPHRAD is a computer code for analysis and design of disk or circular-sector heatrejecting radiators for spacecraft power systems. A specific application is for Stirlingcycle/linear-alternator electric-power systems coupled to radioisotope general-purpose heat sources. GPHRAD affords capabilities and options to account for thermophysical properties (thermal conductivity, density) of either metal-alloy or composite radiator materials. GPHRAD also enables specification of a heat-pipe radiator design with a radial location of the embedded heat-pipe condenser section determined numerically so that minimum radiator area is obtained. Alternatively, the user can specify a radial location of the heat-pipe condenser section for easier assembly with other components. In this case, GPHRAD determines the tradeoff cost in increased radiator area for this choice. A third option is to design a radiator without heat pipes, with heat flowing radially outward from the cylindrical cold section of the Stirling power system. A major subroutine, TSCALC, calculates an equilibrium sink temperature for a radiator, taking account of the solar absorptivity and thermal emissivity of the radiator surface, the spacecraft-to-Sun distance expressed in astronomical units (AU), the angle at which solar radiation is incident on the radiator surface, and the view factor to space of the radiator surface and the infrared absorptivity-to-emissivity ratio for planetary thermal radiation, if any. The sink temperature, along with the heatsource temperature and properties of the radiator material, serve as inputs to the GPHRAD code, which then calculates dimensions of, and temperature distribution within the radiator for a required heatrejection load at given heat-rejection source temperature, such as the Stirling power system “cold” side temperature. The option to specify the disk tip-to-hub thickness ratio permits investigation of mass savings achieved by trapezoidal of parabolic tapering of the disk radiator design.

Posted in: Briefs

Read More >>

Electronic Router

Electronic Router (E-Router) is an application program for routing documents among the cognizant individuals in a government agency or other organization. E-Router supplants a prior system in which paper documents were routed physically in packages by use of paper slips, packages could be lost, routing times were unacceptably long, tracking of packages was difficult, and there was a need for much photocopying. E-Router enables a user to create a digital package to be routed. Input accepted by E-Router includes the title of the package, the person(s) to whom the package is to be routed, attached files, and comments to reviewers. Electronic mail is used to notify reviewers of needed actions. The creator of the package can, at any time, see the status of the package in the routing structure. At the end of the routing process, ERouter keeps a record of the package and of approvals and/or concurrences of the reviewers. There are commercial programs that perform the general functions of E-Router, but they are more complicated. E-Router is Web-based, easy to use, and does not require the installation or use of client software.

Posted in: Briefs

Read More >>

Centralized Planning for Multiple Exploratory Robots

A computer program automatically generates plans for a group of robotic vehicles (rovers) engaged in geological exploration of terrain. The program rapidly generates multiple command sequences that can be executed simultaneously by the rovers. Starting from a set of high-level goals, the program creates a sequence of commands for each rover while respecting hardware constraints and limitations on resources of each rover and of hardware (e.g., a radio communication terminal) shared by all the rovers. First, a separate model of each rover is loaded into a centralized planning subprogram. The centralized planning software uses the models of the rovers plus an iterative repair algorithm to resolve conflicts posed by demands for resources and by constraints associated with the all the rovers and the shared hardware. During repair, heuristics are used to make planning decisions that will result in solutions that will be better and will be found faster than would otherwise be possible. In particular, techniques from prior solutions of the multiple-traveling-salesmen problem are used as heuristics to generate plans in which the paths taken by the rovers to assigned scientific targets are shorter than they would otherwise be.

Posted in: Briefs, TSP

Read More >>

Predicting Flows of Rarefied Gases

DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases — especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuumbased equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.

Posted in: Briefs

Read More >>

Software Would Largely Automate Design of Kalman Filter

Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.

Posted in: Briefs, TSP

Read More >>

Autonomous Navigation by a Mobile Robot

ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local pathplanning algorithm, which plans obstacleavoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.

Posted in: Briefs, TSP

Read More >>