Special Coverage

Home

Low Er-Doped Yttrium Gallium Garnet (YGG) as Active Media for Solid-State Lasers at 1651 nm

This technology could serve applications in the bio-medical areas such as nerve stimulation and dentistry. Goddard Space Flight Center, Greenbelt, Maryland The typical approach for producing laser output at the 1651-nm wavelength is via nonlinear frequency conversion. Lasers based on nonlinear conversion are complex, and it is very difficult to provide stability over time and over a wide range of operating temperatures. The efficiency of such optical sources is also low. A much more promising approach is the use of active media that allows for the development of solid-state lasers (SSL) with spectral emission at 1651 nm. An important requirement for this active medium is the ability to support in-band pumping with a low quantum defect since this approach leads to significant improvement in efficiency of SSLs and excellent beam characteristics due to low thermal stress of the active media.

Posted in: Briefs, TSP, Lasers & Laser Systems

Read More >>

Signal Processing Software for Remote Vital Sign Monitoring

NASA’s Jet Propulsion Laboratory, Pasadena, California This software provides the processing for a non-contact system that remotely estimates the heart rate and respiration rate of individuals as they carry on daily activities, and also enables detection of heart and respiration rate through walls.

Posted in: Briefs, TSP, Electronics & Computers, Patient Monitoring, Data Acquisition

Read More >>

Versatile Platform for Nanotechnology Based on Circular Permutations of Chaperonin Protein

Circular permutation is used to join peptide sequences within a protein template. Ames Research Center, Moffett Field, California The controlled organization of inorganic materials into multi-dimensional addressable arrays is the foundation for logic and memory devices, as well as other nonlinear optical and sensing devices. Many of these devices are currently fabricated using lithographic patterning processes that have progressively developed toward greater integration densities and smaller sizes. At submicron scales, however, conventional lithographic processes are approaching their practical and theoretical limits. At scales below 100 nm, ion and electron beam lithography becomes prohibitively expensive and time consuming, and more importantly, at these scales, quantum effects fundamentally change the properties of devices.

Posted in: Briefs

Read More >>

Zero-G Condensing Heat Exchanger with Integral Disinfection

The proposed concept promises to improve the life support environment for astronauts. John H. Glenn Research Center, Cleveland, Ohio A concept for a unique zero-g condensing heat exchanger that has an integral ozone-generating capacity has been conceived. This design will contribute to the control of metabolic water vapor in the air, and also provide disinfection of the resultant condensate, and the disinfection of the air stream that flows through the condensing heat exchanger.

Posted in: Briefs

Read More >>

Concurrent O2 Generation and CO2 Control for Advanced Life Support

Lyndon B. Johnson Space Center, Houston, Texas A life support system generates oxygen in low oxygen and/or hazardous environments such as mining, chemical/biological attacks, nuclear fallout, or space exploration. Based on proven technology, this O2/CO2 control system has the potential to significantly reduce the mass of the oxygen carried into the low oxygen and/or hazardous environment by continuously regenerating the oxygen used by the human subject(s).

Posted in: Briefs

Read More >>

Gene Expression Signatures for Colon Carcinogenesis and Radiation-Induced Cellular Transformation

Lyndon B. Johnson Space Center, Houston, Texas Monitoring colon health and transformation into a diseased tissue, including inflammation and cancer, is difficult using conventional techniques, as individuals are required to undergo invasive procedures. However, by using exfoliated cells, it is possible to characterize the overall health of the colon by monitoring patterns of gene expression.

Posted in: Briefs, Patient Monitoring

Read More >>

Detecting High Stress in Oral Interviews and Text Documents

Content of an interview or text is subjected to various levels of statistical analysis to determine if the person knows the truth and is communicating it. Ames Research Center, Moffett Field, California When a person is interviewed, some of the answers may be inaccurate, or even deceptive, because the person may have either incomplete information, is telling only part of the truth, or is fabricating a false answer, or a combination of all three. When the person is habitually making statements that are known to be false, or only partly true, emotional and/or intellectual conflicts often arise within them, and these conflicts may become manifest by inconsistencies in use of different parts of speech or in logical relationships between statements. These inconsistencies are more subtle than inconsistencies in factual statements, and identification of these inconsistencies is more difficult and less straightforward than identification of factual inconsistencies.

Posted in: Briefs, TSP, Electronics & Computers, Data Acquisition

Read More >>

White Papers

Tubing & Hose Buying Tips, Part 2
Sponsored by Newage Industries
Automated Inspection Lowers Solar Cell Costs
Sponsored by Teledyne DALSA
Analog Signal Conditioning for Accurate Measurements
Sponsored by Sealevel
High Reliability Flexible Circuits for the Medical Marketplace
Sponsored by Tech Etch
Determining an Effective Analog Sampling Rate
Sponsored by Sealevel
Wire Springs versus Machined Springs A Comparison
Sponsored by helical

White Papers Sponsored By: