Special Coverage

Soft Robot “Walks” on Any Terrain
Defense Advanced Research Projects Agency
Using Microwaves to Produce High-Quality Graphene
Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines

PTC Heater Brings Greater Control for Hand-held Medical Devices and Disposables

Point of Care diagnostics devices, whether handheld or single-use, often require a brief application of tightly controlled heat. The disposable nature of these devices requires a low-cost component capable of delivering that heat reliably and safely. Heatron's new PTC heater solution uses a polymer-based heater technology that controls heat to within ±2°C of the target temperature, and reduces unit cost by eliminating sensors and applied controls.

Posted in: White Papers, Briefs, TSP, Electronics & Computers, Thermoelectrics, Medical, Medical equipment and supplies, Heating, ventilation, and air conditioning systems (HVAC), Heating, ventilation, and air conditioning systems (HVAC), Polymers

Bayesian Sleep Fusion

This tool can be adapted to track fatigue levels of individuals in occupations associated with high levels of exhaustion or periods of circadian misalignment.

To ensure mission success, astronauts must maintain a high level of performance, even when work-rest schedules result in chronic sleep restriction and circadian misalignment, both of which can contribute to fatigue and performance deficits unless effective countermeasures are used. The overarching goal of this project is to build an Individualized Fatigue Meter to provide astronauts and mission support personnel with immediate feedback about their alertness or fatigue levels. The Individualized Fatigue Meter incorporates sleep history, ambient light levels, schedule information, and performance tests to provide immediate individualized feedback about alertness, and allow critical insight when making decisions about scheduling future sleep periods and selecting fatigue countermeasures.

Posted in: Briefs, TSP, Medical, Human factors, Mental processes, Spacecraft

Technique for Reversible Permeabilization of Live Cells for Intracellular Delivery of Quantum Dots

Nanomaterials are comparable in size to various biomolecules (1 to 100 nm), and have unique properties such as enhanced electrical conductivity, increased chemical reactivity, and novel optical properties that make them attractive candidates for various biomedical applications. Their comparable size and unique optical properties have been utilized to develop efficient tools for subcellular imaging and delivery of biomolecules. Traditional bimolecular delivery methods utilize plasmids, cationic polymers, lipids, and viruses that have inherent disadvantages such as degradation in physiological solutions, and the need for complex conjugation techniques.

Posted in: Briefs, TSP, Medical, Biological sciences, Nanomaterials

Introduction of Structural Affinity Handles as a Tool in Selective Nucleic Separations

This invention relates to the general field of bio-chemical separations. Current methods for separating nucleic acids either lack sufficient selectivity or large-capacity production as required for gene therapy or DNA vaccines or other applications. There is a need for more selective methods of separating nucleic acids that results in a relatively uncontaminated product in larger volumes and yields than achieved with currently available separation methods.

Posted in: Briefs, TSP, Medical, Biological sciences

Functionalized Patterning of Tissue Engineering Substrates

Task also includes bioprinting cell-laden constructs for multi-compartment tissue chambers.

Tissue engineering (TE) is an emerging field for tissue repair and regeneration compared to conventional techniques including autograft and allograft, through engineering functional implants created from living cells. TE is a highly interdisciplinary research area where material science, engineering, and biology are blended to achieve tissue regeneration. Efforts have been made to regenerate liver, skin, bone, and vascular tissues by applying a tissue engineering approach. To generate any type of tissue in a laboratory environment, scientists need to mimic the cellular microenvironment by offering structural, chemical, physical, and biological cues to the cells. Introduction of these cues to the cellular environment starts with manufacturing a supportive matrix called a scaffold.

Posted in: Briefs, TSP, Medical, Biological sciences, Prostheses and implants, Additive manufacturing, Fabrication

Hearing Test System Suitable for Self-Administered Hearing Assessment

Astronauts have developed hearing loss in space, so the goal of this project was to provide a robust, self-administered, accurate noise-tolerance hearing test system for astronauts. The device includes Bekesy-like threshold audiometry, distortion product otoacoustic emission testing, and gap-detection testing.

Posted in: Briefs, TSP, Medical, Human factors, Noise measurement, Noise measurement, Test equipment and instrumentation, Spacecraft

Assessment of Microbial Bioburden Within Aerogel Matrices

A post-capture aerogel degradation via cryogenic grinding is compatible with downstream nucleic-acid-based molecular modes of analysis.

A makeshift apparatus has been designed composed of a sealed, hydrophobic 2-propanol/SiO2 aerogel component to filter outside air particles. Following verification and assessment, the apparatus was crafted with a Buchner funnel. Aerogel matrices were tightly fitted into filter housings and secured in side-arm flasks, which were then equipped to a vacuum pump to pull air through the aerogel matrices. Aerogels, both with and without fiberglass reinforcement, were used to collect airborne particulates for one- and three-hour increments. An untreated negative control aerogel, employing air collection from a laminar hood, and a positive aerogel matrix were seeded with endospores that verified the extraction from the matrices.

Posted in: Briefs, TSP, Medical, Bacteria

Using Electromagnetic Time-Variance Magnetic Fields to Generate and Re-Grow Cartilage

Lyndon B. Johnson Space Center, Houston, Texas

Adevice provides electromagnetic pulses at a predetermined frequency that will result in cartilage cell regeneration and regrowth for patients with arthritis, which reduces or eliminates joint cartilage. The device can be wrapped around the joints in a patient where infected cartilage is located. Molecular and marker data have shown this innovation to work as described above. This is a non-invasive technology that regenerates the patient’s own tissue, allowing for possibly no significant side-effects or foreign matter reactivity.

Posted in: Briefs, TSP, Medical, Medical, health, and wellness

Polymerase Chain Reaction Preparation Kit and Self-Enclosed, Pipette-Free DNA/RNA Isolation Device

Other applications include situations involving the military and in cases where one has to perform PCR analysis in the field.

Lyndon B. Johnson Space Center, Houston, Texas

The ability to monitor and detect microorganism contamination/infection is important for long space voyages, in order to maintain a clean environment not only for the health of the astronauts, but also for electronics and structural materials. Technologies based upon the polymerase chain reaction (PCR) method have proven to be faster and more sensitive than traditional methods in diagnosis of microorganisms. The real-time PCR technique has been used on the ground to detect microorganisms in the samples collected on the International Space Station (ISS). However, the ability of using PCR to detect infectious agents rapidly and specifically in space is currently unavailable. The major technological blockade to the use of PCR in space is the lack of a hazard-free and microgravity compatible hardware for RNA/DNA isolation.

Posted in: Briefs, TSP, Medical, Medical, health, and wellness, Diagnostics, Test equipment and instrumentation, Spacecraft

Hydrostatic Hyperbaric Oxygen Treatment Chamber

This system allows treatment of patients in remote locations.

Lyndon B. Johnson Space Center, Houston, Texas

A hyperbaric chamber has been designed to achieve the goals of maximizing safety, minimizing complexity, and minimizing cost of hyperbaric chamber therapy. This design minimizes the volume of compressed gas in the chamber, and eliminates the need for complex gas mixing, carbon dioxide scrubbing, thermal management, and fire suppression systems. The simple pressurization system affords safe operation by minimally trained personnel. It requires only clean water and small volumes of compressed oxygen, and uses no electrical power. These features allow the chamber to be used in remote, undeveloped locations where hyperbaric oxygen therapy is currently not feasible.

Posted in: Briefs, TSP, Medical, Medical, health, and wellness

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.