Special Coverage

Home

Visual Image Sensor Organ Replacement

This innovation is a system that augments human vision through a technique called “Sensing Super-position” using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks.

Posted in: Medical, Briefs, TSP

Read More >>

Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples

Advantages include reduced or eliminated use of toxic reagents and operator-independent extraction. RNA isolation is a ubiquitous need, driven by current emphasis on micro-arrays and miniaturization. With commercial systems requiring 100,000 to 1,000,000 cells for successful isolation, there is a growing need for a small-footprint, easy-to-use device that can harvest nucleic acids from much smaller cell samples (1,000 to 10,000 cells). The process of extraction of RNA from cell cultures is a complex, multi-step one, and requires timed, asynchronous operations with multiple reagents/buffers. An added complexity is the fragility of RNA (subject to degradation) and its reactivity to surface.

Posted in: Bio-Medical, Medical, Briefs, TSP

Read More >>

On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF

This technology is applicable as a rehabilitation or exercise device. Various machines have been developed to address the need for countermeasures of bone and muscle deterioration when humans operate over extended time in space. Even though these machines are in use, each of them has many limitations that need to be addressed in an effort to prepare for human missions to distant bodies in the solar system.

Posted in: Bio-Medical, Medical, Briefs, TSP

Read More >>

Enabling Microliquid Chromatography by Microbead Packing of Microchannels

The microbead packing is the critical element required in the success of onchip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and lowpower element to separate amino acids and their chiral partners efficiently to understand better the origin of life.

Posted in: Bio-Medical, Imaging & Diagnostics, Monitoring & Testing, Materials / Adhesives / Coatings, Optics/Photonics, Fluid Handling, Medical, Diagnostics, Measuring Instruments, Briefs, TSP, MDB

Read More >>

Nanoscale Surface Plasmonics Sensor With Nanofluidic Control

This sensor has applications in health centers, clinical labs, pharmaceutical firms, drug research labs, and other facilities engaged in biomarker screening. Conventional quantitative protein assays of bodily fluids typically involve multiple steps to obtain desired measurements. Such methods are not well suited for fast and accurate assay measurements in austere environments such as spaceflight and in the aftermath of disasters. Consequently, there is a need for a protein assay technology capable of routinely monitoring proteins in austere environments. For example, there is an immediate need for a urine protein assay to assess astronaut renal health during spaceflight. The disclosed nanoscale surface plasmonics sensor provides a core detection method that can be integrated to a lab-on-chip device that satisfies the unmet need for such a protein assay technology.

Posted in: Bio-Medical, Medical, Briefs, TSP

Read More >>

Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex

This non-invasive monitoring method can be used to evaluate the mental state of people performing critical tasks. Functional near infrared spectroscopy (fNIRS) is an emerging optical neuroimaging technology that indirectly measures neuronal activity in the cortex via neurovascular coupling. It quantifies hemoglobin concentration ([Hb]) and thus measures the same hemodynamic response as functional magnetic resonance imaging (fMRI), but is portable, non-confining, relatively inexpensive, and is appropriate for long-duration monitoring and use at the bedside. Like fMRI, it is noninvasive and safe for repeated measurements. Patterns of [Hb] changes are used to classify cognitive state. Thus, fNIRS technology offers much potential for application in operational contexts. For instance, the use of fNIRS to detect the mental state of commercial aircraft operators in near real time could allow intelligent flight decks of the future to optimally support human performance in the interest of safety by responding to hazardous mental states of the operator. However, many opportunities remain for improving robustness and reliability. It is desirable to reduce the impact of motion and poor optical coupling of probes to the skin. Such artifacts degrade signal quality and thus cognitive state classification accuracy. Field application calls for further development of algorithms and filters for the automation of bad channel detection and dynamic artifact removal.

Posted in: Bio-Medical, Test & Measurement, Imaging & Diagnostics, Medical, Patient Monitoring, Briefs, TSP, MDB

Read More >>

The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention

The system design recovers warm exhaled air and re-circulates it inside the suit. A body at sea is vulnerable to hypothermia, which often leads to loss of life. Hypothermia is caused by the differences between the core body temperature and the surrounding air and seawater temperatures. The greater the differences between the body core temperature and the sea temperature, the more rapidly the core body temperature will drop, and hypothermia can quickly set in. Heat loss is primarily caused by conduction of heat away from the body. Most cold immersion suits on the market are passive designs that only insulate the body against the cold, although some cold immersion suits use special materials such as paraffin to absorb heat and to radiate the heat back to the body. This new utility patent is an active design that relies on the lung’s role as an organic heat exchanger for providing deep body core heating of air. It is based on the fact that the greatest heat loss mechanism for an insulated human body immersed in a cold water environment is due to heat loss through respiration.

Posted in: Bio-Medical, Medical, Briefs, TSP

Read More >>