Special Coverage

Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applications
Evaluation Standard for Robotic Research

Coming Soon - Fast-Tracking ADAS and Autonomous Vehicle Development with Simulation

In Conjunction with SAE

Developing Advanced Driver Assistance Systems (ADAS) and autonomous vehicles is a challenge without precedent. Whole new engineering fields – such as artificial intelligence – need to be developed, yet time-to-market is short with intense competition. Estimates indicate that billions of miles of road testing will be necessary to ensure safety and reliability of ADAS and autonomous vehicles. This impossible task can only be accomplished with the help of engineering simulation. With simulation, thousands of driving scenarios and design parameters can be virtually tested with precision, speed, and cost economy.

Posted in: Upcoming Webinars, Automation

Will Soft Robots Improve Search-and-Rescue Operations?

University of California, San Diego researchers have demonstrated a soft robot that lifts its legs over obstacles and operates on a variety of terrains. What do you think? Will the 3D-printed quadrupedal technologies someday support search-and-rescue missions?

Posted in: Question of the Week, Automation, Robotics

3D-Printed Soft Robot ‘Walks’ on Any Terrain

Traditional robots often feature isolated mechanical joints. These discrete components limit a rover’s ability to traverse sand, stone, and other challenging environments.

A team at the University of California San Diego has demonstrated a more flexible option: a soft robot that lifts its legs over obstacles and operates on a variety of terrains. The 3D-printed quadrupedal technology may someday support search-and-rescue missions requiring intelligent navigation capabilities.

Posted in: News, Manufacturing & Prototyping, Materials, Automation, Robotics

Sound-Off: How are Collaborative Robots Being Used Today?

Are you seeing collaborative robots being integrated into today's production and manufacturing environments? Tech Briefs invites you to "Sound Off" on the role of "cobots."

Posted in: News, Robotics

Human-Robot Interaction: When Robotics Meets Philosophy

To support human-robot interaction, designers are taking a page from philosophy and studying how we work together with one another.

Posted in: News, Automation, Robotics

Exo-Brake Enables Safe Return for Small Spacecraft

The tension-based, flexible braking device resembles a cross parachute.

Posted in: Briefs, Automation, Product development, Drag, Entry, descent, and landing, Satellites, Spacecraft

Intelligent Robotics Safeguarding

Traditional robot applications limit operator access to hazards through hard-guarding and protective devices that either detect and stop the hazard, or prevent access into the safeguarding space until the hazard no longer exists. The introduction of power- and force-limited robots used in collaborative applications changes this environment. Reduced or nonexistent hard-guarding, along with continuous motion and interaction between the robot and the operator, makes the environment inherently dynamic and uncertain. Methods to reduce risks to a tolerable level include limiting forces and speed, but these measures can yield unacceptable production rates.

Posted in: Articles, Robotics

Today’s Advanced Hose And Hydraulic Systems

If you’re under pressure to pick the right components to keep your hydraulic hose assemblies running at peak performance—without incidents or downtime—you’re not alone.

Posted in: White Papers, Motion Control, Automation

Interface Simplifies Remote Robot Operation

Georgia Institute of Technology researchers created a new interface to remotely control robots that is much simpler and more efficient than current techniques. The user simply points and clicks on an item, then chooses a grasp. The robot does the rest of the work.

The traditional interface for remotely operating robots employs a computer screen and mouse to independently control six degrees of freedom, turning three virtual rings and adjusting arrows to get the robot into position to grab items or perform a specific task. But for someone who isn’t an expert, the ring-and-arrow system is cumbersome and error-prone. It’s not ideal, for example, for older people trying to control assistive robots at home.

Posted in: News, Motion Control, Robotics, Software

Shaping the Future of Service Robotics

Robots emerged in the early 1960s as a way to automate the monotonous and dangerous tasks in factories around the world. As time passed and new technologies emerged, these robots have taken a place outside of the industrial market and alongside humans in manufacturing and non-manufacturing applications alike.

Posted in: White Papers, Manufacturing & Prototyping, Motion Control, Automation, Robotics

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.