Special Coverage

Home

Researchers Develop a Way to Control Material with Voltage

A new way of switching the magnetic properties of a material using just a small applied voltage, developed by researchers at MIT and collaborators elsewhere, could signal the beginning of a new family of materials with a variety of switchable properties. The technique could ultimately be used to control properties other than magnetism, including reflectivity or thermal conductivity. The first application of the new finding is likely to be a new kind of memory chip that requires no power to maintain data once it’s written, drastically lowering its overall power needs. This could be especially useful for mobile devices, where battery life is often a major limitation.

Posted in: News, Batteries, Board-Level Electronics, Electronic Components, Power Management, Metals

Read More >>

Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: News, Batteries, Electronic Components, Power Management, Energy Efficiency, Ceramics

Read More >>

Radiation Hard By Design (RHBD) Electronics

Under certain conditions, a false signal will be absorbed and a correct signal will be generated. Goddard Space Flight Center, Greenbelt, Maryland Current RHBD electronics are limited to speeds that approximate 250 MHz, regardless of the electronic process. The fact that determines the final speed is based on the nature of the current SEU (single-event upsets) radiation-tolerant latches, and the data flow between the latches through combinational logic.

Posted in: Briefs, TSP

Read More >>

Detecting Loss of Configuration Access of Reprogrammable FPGA Without External Circuitry

This innovation makes use of the clearing of distributed memory that results from configuration refreshes. Langley Research Center, Hampton, Virginia The configuration of the reprogrammable field-programmable gate array (FPGA) currently on the market is very susceptible to single event upset when it operates in radiation environments. The current state-of-the-art approach is to refresh the configuration while the FPGA is operating. When using this approach, it is essential to detect the loss of configuration access while the FPGA is operating in a radiation environment, allowing the system to initiate a configuration access recovery.

Posted in: Briefs, TSP

Read More >>

Micro-Coil Spring Interconnection for Ceramic Grid Array Packaged Integrated Circuits

This interconnection method extends the useful life of ceramic area array integrated circuits. Marshall Space Flight Center, Alabama This method of interconnecting ceramic integrated circuits to organic printed circuit boards (PCBs) is designed to substantially increase the life of the interconnections. This is accomplished by providing a means of compensating for the shear stresses produced by thermal excursions as a result of the large mismatch of coefficients of thermal expansion between the integrated circuit and the printed circuit board.

Posted in: Briefs

Read More >>

Method for Formal Verification of Polymorphic Heterogeneous Multicore Processors

John H. Glenn Research Center, Cleveland, Ohio Amethod was developed to model polymorphic heterogeneous multicore processors at a high level of abstraction, and formally verify them. The Bahurupi polymorphic heterogeneous multi-core architecture allows the combination of multiple simple processor cores — which can be superscalar — in order to form a coalition that behaves like a wider superscalar processor. This is done at runtime under software directives, allowing the architecture to adapt to the needs of executed applications with high instruction level parallelism. Such coalitions of cores were found to have comparable or better performance than that of a wide superscalar processor with issue width equal to the sum of the issue widths of the simple cores in the coalition, while avoiding the complexity, reliability issues, and high power consumption of wide superscalar cores. All of these are highly desirable advantages of future microprocessors that will be optimized for aerospace applications.

Posted in: Briefs, TSP

Read More >>

SEE Mitigation Technique for Self-Timed Circuits and Rad-Hard, Self-Timed Configurable Memory

The new block RAM is faster and consumes less power than conventional block RAMs, while providing unparalleled levels of radiation resilience. Marshall Space Flight Center, Alabama To enable NASA’s next-generation missions, there is a critical need for a reconfigurable field programmable gate array (FPGA) that can withstand the wide temperature ranges and radiation of the space environment while consuming minimal power without compromising on performance. To address this need, GoofyFoot Labs developed the E2-AMP FPGA, a radiation-hardened, high-performance, low-power FPGA capable of operating reliably over wide temperature ranges and rapid thermal changes.

Posted in: Briefs

Read More >>

White Papers

Why Surface Contact Pressure In Your Manufacturing Process Matters
Sponsored by sensor products
High-Speed A/Ds for Real-Time Systems
Sponsored by Pentek
Remediation and Prevention of Moisture in Electronics
Sponsored by multisorb technologies
Meeting Industry Standards for Sanitation in The Food Industry
Sponsored by Able Electropolishing
X-Ray Imaging: Emerging Digital Technology - CMOS Detectors
Sponsored by Teledyne DALSA
Automated Inspection Lowers Solar Cell Costs
Sponsored by Teledyne DALSA

White Papers Sponsored By: