Special Coverage


Physical Characterization of Radiated and Non-Radiated Materials to Temperatures Less than 50 K

Coefficient of thermal expansion and Young’s modulus of the materials are determined via custom analytical equipment that can allow temperatures down to 20 K. NASA’s Jet Propulsion Laboratory, Pasadena, California Solar-array panels will experience very low temperatures of 50 K for the proposed Europa Clipper Mission (ECM). Solar-array panels will also undergo thermal cycling from 50 K to 133 K during the mission due to Jovian eclipsing. Unfortunately, there was no knowledge of the physical properties of the materials planned to be used down to ≈50 K, making it difficult to assess their reliability under such extreme cryogenic temperature conditions.

Posted in: Briefs, TSP, Data Acquisition, Sensors


Worldview Satellite Imagery Browsing and Downloading Tool

Goddard Space Flight Center, Greenbelt, Maryland Worldview is a software tool designed for interactively browsing and downloading imagery from NASA’s Earth observing satellites. Building upon a set of open source mapping and user interface libraries, it provides an environment to visually discover interesting phenomena as observed by NASA satellites, then download the data for further analysis. It was originally designed to address the needs of the near-real-time applications community to provide relevant information for time-critical scenarios such as wildfire and flood management. As such, satellite imagery is available to be viewed in Worldview within four hours of observation; the imagery can be viewed in its highest, or native, resolution, and the imagery can be panned and zoomed rapidly through space and time to find the most relevant/cloud-free information available.

Posted in: Briefs, TSP


Method and Device for Biometric Subject Verification and Identification

This technique can be used by homeland security personnel, in airports, and by law enforcement for identity verification. Ames Research Center, Moffett Field, California This invention allows the verification and identification of a person based on features extracted from one or more electrocardiographic leads or channels. For identification purposes, the invention can be used to identify a subject from a group of known subjects. For verification purposes, the invention can be used to allow access to secured facilities or remote services over the Internet to allow access to or control of computers, cars, airplanes, ships, and submarines; to enable/disable electronic alarms; to open safes or security deposits; and to enable guns and special weapons that require restricted access.

Posted in: Briefs


SMAP Radiometer Instrument Science Signal and Data Processing Software (SPS)

Goddard Space Flight Center, Greenbelt, Maryland This technology was developed for the Soil Moisture Active Passive (SMAP) mission and for the IRAD-FY13 Technology for Radiometer RFI Noise Detection & Mitigation Based on HHT2. Spacecraft beyond the present state-of-the-art passive radiometry will make use of natural thermal emissions to remotely sense Earth phenomena of interest to science (soil moisture, for example) in the technologically challenging microwave L-band. In this 1.4-GHz band (used by SMAP), a terrestrial source thermal signal emission to space suffers less attenuation by the intervening atmosphere. Unfortunately, the relative insensitivity of the L-band region to atmospheric effects also makes it an extremely attractive spectral range for wireless communications and radars that are causing radio frequency interference (RFI) with the spaceflight science radiometer instruments’ terrestrial phenomenon signal of interest, even as this band is protected by radio-communication regulations. Detection and excision or mitigation of the RFI-contaminated measurements is a challenge to the state of the art.

Posted in: Briefs, TSP


Advanced Methodology for Precisely Simulating RTD Sensor Types

This technology has applications in plant process simulation, hardware-in-the loop testing of electronic control units in automobiles and avionics, and spacecraft and satellite systems testing. VTI Instruments Corporation, Irvine, California Resistance thermometers, also called resistance temperature detectors (RTDs), are very common sensors used for temperature measurement. Their reliability, ruggedness, wide range, and value make them popular in the process industry and research laboratories alike. A wide range of instruments, PLC I/O systems, data acquisition, and control systems are designed to interface with these sensors and perform actions based on their measured value. Testing of such systems requires a sensor to be simulated, where hardware-in-the-loop testing is mandatory. Often the validation of such systems will end up being a complex issue if not properly planned.

Posted in: Briefs, Sensors


Sampling Mechanism for a Comet Sample Return Mission

A similar sampling mechanism could be deployed in dangerous situations on Earth. Goddard Space Flight Center, Greenbelt, Maryland Sample return missions have the ability to vastly increase scientific understanding of the origin, history, current status, and resource potential of solar system objects including asteroids, comets, Mars, and the Moon. However, to make further progress in understanding such bodies, detailed analyses of samples are needed from as many bodies as possible. A standoff sample collection system concept has been developed that would quickly obtain a sample from environments as varied as comets, asteroids, and permanently shadowed craters on the Moon, using vehicles ranging from traditional planetary spacecraft to platforms such as hovering rotorcraft or balloons on Mars, Venus, or Titan. The depth of penetration for this harpoon- based hollow collector was experimentally determined to be proportional to the momentum of the penetrator in agreement with earlier work on the penetration of solid projectiles. A release mechanism for the internal, removable sample cartridge was tested, as was an automatic closure system for the sample canister.

Posted in: Briefs, TSP, Machinery & Automation, Monitoring


Development of a Turnkey Clear Air Turbulence Detection System

Turbulence is determined via three infrasonic microphones. Langley Research Center, Hampton, Virginia Currently, the only available means of reporting clear air turbulence (CAT) is the pilot report (PIREP), whereby a pilot experiencing turbulence reports their location and associated data. In this report, a system is proposed that would allow the detection of CAT through infrasonic emissions.

Posted in: Briefs, TSP, Aviation, Detectors


White Papers

Putting FPGAs to Work in Software Radio Systems
Sponsored by Pentek
High Reliability Flexible Circuits for the Medical Marketplace
Sponsored by Tech Etch
ISO 13485 - The proposed changes and what they mean for you
Sponsored by bsi
Sterilization of Medical Equipment
Sponsored by master bond
Finding the Right Manufacturer for Your Design
Sponsored by Sunstone Circuits
What is Wiring Synthesis?
Sponsored by mentor graphics

White Papers Sponsored By: