Special Coverage

Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment
Wide-Area Surveillance Using HD LWIR Uncooled Sensors
Heavy Lift Wing in Ground (WIG) Cargo Flying Boat
Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water

GRAVITE Pull Server

Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system is a National Oceanic and Atmospheric Administration (NOAA) system, developed and deployed by Joint Polar Satellite System (JPSS) Ground Project to support Calibration and Validation (Cal/Val), Data Quality Monitoring, and Algorithm Investigation, Tuning and Integration. GRAVITE enables novice and expert users to discover and obtain data easily by using standard protocols. The Pull Server is a component of the GRAVITE version 3.0 (GV3.0) system. It provides a mechanism to download remote data file(s) using easy-to-understand download rules. When there are few rules pertaining to the same remote location, it can be grouped using a product paradigm. A download rule can be defined with only three pieces of information: remote server, source, and target location. The source and target location can be specified using calculated fields as well as regular expressions. The rules are then converted into a “wget” statement, which is a popular utility for downloading remote files. This solves most of the compatibility issues with connecting to a remote server.

Posted in: Briefs, TSP, Data Acquisition, Computer software / hardware, Computer software and hardware, Computer software / hardware, Computer software and hardware, Data management, Quality assurance, Quality assurance
Read More >>

Free Space Optical Receiver for Data Detection and Radio Science Measurements

This technique is intended to save power, bandwidth, and scheduling demands on the spacecraft.

NASA’s Jet Propulsion Laboratory, Pasadena, California

For deep space communication systems, the decision of whether or not to suppress the transmitted carrier has always been an issue. For certain missions that use high data rates, the available bandwidth might be a limiting factor. In such cases, it is preferred to use a completely suppressed carrier system that is more bandwidth efficient.

Posted in: Briefs, TSP, Data Acquisition, Data Acquisition, Sensors, Optics, Telecommunications, Optics, Telecommunications, Data acquisition, Data acquisition (obsolete), Spacecraft
Read More >>

Precision Miniature Attitude Determination and Control System

The system is designed to function with a high degree of autonomy.

Goddard Space Flight Center, Greenbelt, Maryland

The MAI-400SS Space Sextant is a turnkey Attitude Determination And Control System (ADACS) for CubeSats and nanosatellites. It is an enhanced version of the MAI-400, which is a precision CubeSat ADACS incorporating three reaction wheels, three electromagnets, and an ADACS computer in a ½-U module. This Space Sextant version incorporates two star trackers to improve overall pointing knowledge to 0.02° or better. The star trackers feature “Lost In Space” attitude determination requiring no a priori information.

Posted in: Briefs, TSP, Data Acquisition, Attitude control, Attitude control, Satellites
Read More >>

Combined Detection and Tracking of Moving Objects in Aerial Surveillance Images

NASA’s Jet Propulsion Laboratory, Pasadena, California

This software implements a new probabilistic framework for integrated multi-target detection and tracking of small moving objects in image sequences, with specific application to tracking people in aerial images, in which image stabilization is inherently noisy.

Posted in: Briefs, Data Acquisition, Computer software / hardware, Computer software and hardware, Imaging, Imaging and visualization, Computer software / hardware, Computer software and hardware, Imaging, Imaging and visualization
Read More >>

Neo-Geography Toolkit (NGT) v2

Ames Research Center, Moffett Field, California

The Neo-Geography Toolkit (NGT) is a collection of open-source software tools for the automated processing of geospatial data, including images and maps. It can process raw raster data from remote sensing instruments and transform it into useful cartographic products such as visible image base maps, topographic models, etc. It can also perform data processing on extremely large geospatial data sets (up to several tens of terabytes) via parallel processing pipelines. Finally, it can transform raw metadata, vector data, and geo-tagged datasets into standard Neo-Geography data formats such as KML.

Posted in: Briefs, Data Acquisition, Computer software / hardware, Computer software and hardware, Computer software / hardware, Computer software and hardware, Data acquisition, Data acquisition (obsolete), Satellites
Read More >>

Real-Time, In-Situ Determination and Monitoring of Hot- and Cold-Side Thermal Resistances in Thermoelectric Systems

Applications for this method using the current perturbation approach include automobile exhaust energy recovery and industrial process waste energy recovery systems.

Thermoelectric (TE) energy recovery is an important technology for recovering waste thermal energy in high-temperature industrial, transportation, and military energy systems. TE power systems in these applications require high-performance hot-side and cold-side heat transfer to provide the critical temperature differential and transfer the required thermal energy to create the power output. Hot- and cold-side heat transfer performance is typically characterized by hot-side and cold-side thermal resistances, Rh,th and Rc,th, respectively. This heat transfer performance determines the hot-side temperature, Th, and cold-side temperature, Tc, conditions when operating in energy recovery environments with available temperature differentials characterized by an external driving temperature, Text, and ambient temperature, Tamb.

Posted in: Briefs, TSP, Data Acquisition, Sensors, Thermal management, Thermal management
Read More >>

Physical Characterization of Radiated and Non-Radiated Materials to Temperatures Less than 50 K

Coefficient of thermal expansion and Young’s modulus of the materials are determined via custom analytical equipment that can allow temperatures down to 20 K.

NASA’s Jet Propulsion Laboratory, Pasadena, California

Solar-array panels will experience very low temperatures of 50 K for the proposed Europa Clipper Mission (ECM). Solar-array panels will also undergo thermal cycling from 50 K to 133 K during the mission due to Jovian eclipsing. Unfortunately, there was no knowledge of the physical properties of the materials planned to be used down to ≈50 K, making it difficult to assess their reliability under such extreme cryogenic temperature conditions.

Posted in: Briefs, TSP, Data Acquisition, Data Acquisition, Sensors, Materials properties, Thermal testing, Spacecraft
Read More >>

Worldview Satellite Imagery Browsing and Downloading Tool

Goddard Space Flight Center, Greenbelt, Maryland

Worldview is a software tool designed for interactively browsing and downloading imagery from NASA’s Earth observing satellites. Building upon a set of open source mapping and user interface libraries, it provides an environment to visually discover interesting phenomena as observed by NASA satellites, then download the data for further analysis. It was originally designed to address the needs of the near-real-time applications community to provide relevant information for time-critical scenarios such as wildfire and flood management. As such, satellite imagery is available to be viewed in Worldview within four hours of observation; the imagery can be viewed in its highest, or native, resolution, and the imagery can be panned and zoomed rapidly through space and time to find the most relevant/cloud-free information available.

Posted in: Briefs, TSP, Data Acquisition, Computer software / hardware, Computer software and hardware, Imaging, Imaging and visualization, Computer software / hardware, Computer software and hardware, Imaging, Imaging and visualization, Satellites
Read More >>

Method and Device for Biometric Subject Verification and Identification

This technique can be used by homeland security personnel, in airports, and by law enforcement for identity verification.

Ames Research Center, Moffett Field, California

This invention allows the verification and identification of a person based on features extracted from one or more electrocardiographic leads or channels. For identification purposes, the invention can be used to identify a subject from a group of known subjects. For verification purposes, the invention can be used to allow access to secured facilities or remote services over the Internet to allow access to or control of computers, cars, airplanes, ships, and submarines; to enable/disable electronic alarms; to open safes or security deposits; and to enable guns and special weapons that require restricted access.

Posted in: Briefs, Data Acquisition, Security systems, Security systems, Identification, Data acquisition, Data acquisition (obsolete)
Read More >>

SMAP Radiometer Instrument Science Signal and Data Processing Software (SPS)

Goddard Space Flight Center, Greenbelt, Maryland

This technology was developed for the Soil Moisture Active Passive (SMAP) mission and for the IRAD-FY13 Technology for Radiometer RFI Noise Detection & Mitigation Based on HHT2. Spacecraft beyond the present state-of-the-art passive radiometry will make use of natural thermal emissions to remotely sense Earth phenomena of interest to science (soil moisture, for example) in the technologically challenging microwave L-band. In this 1.4-GHz band (used by SMAP), a terrestrial source thermal signal emission to space suffers less attenuation by the intervening atmosphere. Unfortunately, the relative insensitivity of the L-band region to atmospheric effects also makes it an extremely attractive spectral range for wireless communications and radars that are causing radio frequency interference (RFI) with the spaceflight science radiometer instruments’ terrestrial phenomenon signal of interest, even as this band is protected by radio-communication regulations. Detection and excision or mitigation of the RFI-contaminated measurements is a challenge to the state of the art.

Posted in: Briefs, TSP, Data Acquisition, Computer software / hardware, Computer software and hardware, Computer software / hardware, Computer software and hardware, Data acquisition, Data acquisition (obsolete), Test equipment and instrumentation
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.