Special Coverage

Lightweight, Flexible Thermal Protection System for Fire Protection
High-Precision Electric Gate for Time-of-Flight Ion Mass Spectrometers
Polyimide Wire Insulation Repair System
Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine
Aerofoam
Wet Active Chevron Nozzle for Controllable Jet Noise Reduction
Magnetic Relief Valve
Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Home

Transportable Instrumentation Package for In-Vehicle On-Road Data Acquisition

This portable data acquisition system is a viable alternative to first developing a fully instrumented test vehicle. The study of driver behavior can provide a wealth of information that can be useful in the design of automobiles including active safety features and functions. There may be differences in driver behavior, as reflected in driver state, and these differences may be confounded by a driver’s condition. Much can be learned from studies that look at driver state and condition to answer questions such as how vehicle features and functionality could be designed to complement the driver’s capabilities and limitations in the vehicle. Also, a better understanding could be gained to determine how, or if at all, a safety feature’s characteristics should be modified to accommodate a driver’s condition.

Posted in: Briefs, Physical Sciences, Data Acquisition, Human factors, Data acquisition, Test equipment and instrumentation

Read More >>

Variable Camber Aerodynamic Control Surfaces and Active Wing Shaping Control

Concepts are examined to reduce aerodynamic drag and decrease fuel consumption. A new concept of aircraft aerodynamic control surfaces has been developed in connection with another new concept of active wing shaping control for reducing aircraft drag that will result in less fuel burn. The first concept is referred to as a variable camber continuous trailing edge flap or, alternatively, a variable camber continuous leading edge slat. The variable camber trailing edge flap (or leading edge slat) comprises multiple chord-wise segments (three or more) to form a cambered flap surface, and multiple span-wise segments to form a continuous trailing edge (or leading edge) curve with no gaps that could be prescribed by a mathematical function or the equivalent with boundary conditions enforced at the end points to minimize tip vorticities. Aerodynamic simulations have shown that this type of flap can reduce aerodynamic drag substantially as compared to a conventional flap. A new active wing-shaping control concept is proposed in connection with the presently disclosed variable camber continuous trailing edge flap (or leading edge slat). The active wing-shaping control is designed to change a wing shape in-flight in order to achieve a desired optimal wing shape for optimal drag reduction.

Posted in: Briefs, Physical Sciences, Wings, Aerodynamics, Aircraft

Read More >>

NanoRacks-Scale MEMS Gas Chromatograph System

This is a compact, simple, cost-effective system. In order to study atmospheric or evolved gases, it is highly advantageous for an instrument (e.g. mass spectrometer (MS), thermal conductivity detector (TCD)) to simplify the gas stream with a front-end gas chromatograph (GC). When used for planetary missions, highperformance GCs have to satisfy the additional challenging requirements of surviving high inertial loads with low mass, power, and volume in order to be included in Ventures-, Discovery- and New Frontiers-class missions in today’s budget-constrained reality.

Posted in: Briefs, Physical Sciences, Gases, Test equipment and instrumentation

Read More >>

Simulation of Charge Carrier Mobility in Conducting Polymers

Electric conduction in polymers is one of the key elements in avoiding catastrophic internal electrostatic discharge in dielectrics during space missions. This software package enables the simulation of carrier mobility for any given site concentration, which is a material design parameter that can be varied in experimental studies. The software computes the charge mobility for a disordered network of carrier sites. The mobility is obtained by computing the average drift velocity for an applied electric field. The mobility is given by the ratio of the drift velocity to the electric field.

Posted in: Briefs, Physical Sciences, Software, Computer simulation, Conductivity, Polymers

Read More >>

Technique for Finding Retro-Reflectors in Flash LIDAR Imagery

Orbital rendezvous and docking of two spacecraft is a topic of continued interest to NASA. For crewed missions, it is frequently the case that the target is cooperative (i.e., is equipped with some sort of navigation aid). If one of the relative navigation instruments is a Flash LIDAR, then this aid may be a suite of retro-reflectors. One of the most difficult aspects of this problem (especially at close range) is finding the retro-reflectors in a Flash LIDAR image amongst a substantial amount of clutter.

Posted in: Briefs, Physical Sciences, Imaging and visualization, Spacecraft guidance, Spacecraft

Read More >>

Novel Hemispherical Dynamic Camera for EVAs

A novel optical design for imaging systems is able to achieve an ultra-wide field of view (UW-FOV) of up to 208°. The design uses an integrated optical design (IOD). The UW-FOV optics design reduces the wasted pixels by 49% when compared against the baseline fisheye lens. The IOD approach results in a design with superior optical performance and minimal distortion.

Posted in: Briefs, Imaging, Physical Sciences, Optics, Spacecraft

Read More >>

Ultrasonic Intake Airflow Meter for Testbeds

The airflow meter measures extremely dynamic phenomena of combustion engines without being affected by ambient influences or sensor contamination. An ultrasonic intake airflow meter for engine testbed applications was developed. An automotive intake airflow meter must fulfill a series of requirements differentiating it from typical ultrasonic flow meters. First, the data sampling rate of the device must be as high as possible to be able to measure dynamic phenomena of the combustion engine. It is therefore necessary to use broadband ultrasonic transducers capable of sending short signals without post-pulse oscillations. The state-of-the-art piezoelectric transducers cannot fulfill these requirements. For this reason, the FLOWSONIX

Posted in: Briefs, Physical Sciences, Test & Measurement, Combustion and combustion processes, Engines, Test procedures

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.