Special Coverage

Applying the Dynamic Inertia Measurement Method to Full-Scale Aerospace Vehicles
Method and Apparatus for Measuring Surface Air Pressure
Fully Premixed, Low-Emission, High-Pressure, Multi-Fuel Burner
Self-Healing Wire Insulation
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
Space Optical Communications Using Laser Beams
High Field Superconducting Magnets

Simulation of Charge Carrier Mobility in Conducting Polymers

Electric conduction in polymers is one of the key elements in avoiding catastrophic internal electrostatic discharge in dielectrics during space missions. This software package enables the simulation of carrier mobility for any given site concentration, which is a material design parameter that can be varied in experimental studies. The software computes the charge mobility for a disordered network of carrier sites. The mobility is obtained by computing the average drift velocity for an applied electric field. The mobility is given by the ratio of the drift velocity to the electric field.

Posted in: Briefs, Physical Sciences, Software


Technique for Finding Retro-Reflectors in Flash LIDAR Imagery

Orbital rendezvous and docking of two spacecraft is a topic of continued interest to NASA. For crewed missions, it is frequently the case that the target is cooperative (i.e., is equipped with some sort of navigation aid). If one of the relative navigation instruments is a Flash LIDAR, then this aid may be a suite of retro-reflectors. One of the most difficult aspects of this problem (especially at close range) is finding the retro-reflectors in a Flash LIDAR image amongst a substantial amount of clutter.

Posted in: Briefs, Physical Sciences


Novel Hemispherical Dynamic Camera for EVAs

A novel optical design for imaging systems is able to achieve an ultra-wide field of view (UW-FOV) of up to 208°. The design uses an integrated optical design (IOD). The UW-FOV optics design reduces the wasted pixels by 49% when compared against the baseline fisheye lens. The IOD approach results in a design with superior optical performance and minimal distortion.

Posted in: Briefs, Imaging, Physical Sciences


Ultrasonic Intake Airflow Meter for Testbeds

The airflow meter measures extremely dynamic phenomena of combustion engines without being affected by ambient influences or sensor contamination. An ultrasonic intake airflow meter for engine testbed applications was developed. An automotive intake airflow meter must fulfill a series of requirements differentiating it from typical ultrasonic flow meters. First, the data sampling rate of the device must be as high as possible to be able to measure dynamic phenomena of the combustion engine. It is therefore necessary to use broadband ultrasonic transducers capable of sending short signals without post-pulse oscillations. The state-of-the-art piezoelectric transducers cannot fulfill these requirements. For this reason, the FLOWSONIX

Posted in: Briefs, Physical Sciences, Test & Measurement


Convex Hull-Based Plume and Anomaly Detection

A number of deep space missions have imaged plumes at Io, Enceladus, and other smaller bodies. These phenomena provide valuable information regarding these bodies. To date, this imagery has been captured fortuitously. The ability to utilize onboard processing to conduct campaigns capturing large numbers of images and to detect when a plume event is occurring would open up new mission paradigms. Extended temporal campaigns could provide comprehensive detail on these events’ frequency and character.

Posted in: Briefs, TSP, Physical Sciences, Software


Integrity Sensing With Smart Polymers and Rubber Components on Vehicles

This technology has the potential to improve the quality and provide stability monitoring of materials and connections within seals, tires, and hoses. This research provides a capacitance-based method for monitoring the integrity of tires and other polymeric products during manufacturing and throughout the useful product life. Tires are complex composite structures composed of layers of formulated cross-linked rubber, textiles, and steel reinforcement layers. Tire production requires precise manufacturing through chemical and mechanical methods to achieve secure attachment of all layers. Tires are subjected to a variety of harsh environments, experience heavy loads, intense wear, heat, and in many cases, lack of maintenance. These conditions make tires extremely susceptible to damage.

Posted in: Briefs, Physical Sciences, Sensors


Blade Tip Clearance Sensors for Engine Health Monitoring

These sensors are rugged enough to monitor gas turbine engine blades throughout the life of the engine. Blade health monitoring continues to gain interest as a means of assessing the health of turbine airfoils in aerospace and ground-based gas turbine engines in fleet operation. Many types of blade sensors are used throughout the design validation process of new engines that would theoretically provide information for blade health monitoring. However, most of these sensors are either too difficult to use or do not have sufficient survivability to monitor blades throughout the operational life of the engine.

Posted in: Briefs, Physical Sciences, Sensors


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.