Special Coverage

Iodine-Compatible Hall Effect Thruster
Precision Assembly of Systems on Surfaces (PASS)
Development of a Novel Electrospinning System with Automated Positioning and Control Software
2016 Create The Future Design Contest Open For Entries
Clamshell Sampler
Shape Memory Alloy Rock Splitter
Deployable Extra-Vehicular Activity Platform (DEVAP) for Planetary Surfaces
Home

Thermocouple Rakes for Measuring Boundary-Layer Flows

Flows can be measured extremely close to surfaces. Thin-film devices that comprise heaters in combination with thermocouples have been developed for measuring flow velocities extremely close to solid surfaces, at several distances from the surface of interest. Devices that perform this function are denoted generally as “boundary-layer rakes.” The measurement data acquired by boundary-layer rakes are needed for calculating viscous shear forces, for developing mathematical models of turbulence to be used in computational fluid dynamics, and as feedback in some flow-control systems.

Posted in: Briefs, TSP

Read More >>

Boundary Conditions for Computing Flows of Real Gas Mixtures

It is possible to suppress errors that arise in a simplistic formulation. An improved formulation of equations of flow of a general gas mixture includes consistent boundary conditions that are applicable to real gases. An analysis of prior formulations, with focus on boundary conditions, led to the conclusion that boundary conditions based on ideal mixtures and/or perfect gases can lead to errors in computed flows of real gases. The improved formulation makes it possible to achieve greater accuracy in computation of flows of real (including chemically reactive) gas mixtures, and is expected to be especially beneficial in computing flows of supercritical fluids like those in diesel engines, gas turbine engines, rocket engines, supercritical-fluid extraction processes, and crude oil under high pressure.

Posted in: Briefs, TSP

Read More >>

Seed-Wing Flyers for Exploration

Scientific instruments would be dispersed from aloft by use of miniature autogyros. Small instrumented, free-flying (unpowered) rotary aircraft have been proposed for use in gathering scientific data from hazardous or inaccessible terrain on remote planets as well as on Earth. These aircraft are called “seed-wing flyers” because they would resemble winged seeds (e.g., maple seeds) in both appearance and aerodynamic behavior.

Posted in: Briefs, TSP

Read More >>

Long-Life Stratospheric Balloon System With Altitude Control

There would be no venting of helium or dropping of ballast. A proposed improved balloon system for carrying scientific instruments in the stratosphere would include a lightweight, ambient-pressure helium balloon and a vented infrared Montgolfiere (see figure). [An infrared Montgolfiere is an ambient-pressure warm-air balloon, named after the familiar fire-heated hot-air balloons invented by the Montgolfier brothers. An infrared Montgolfiere is heated primarily by the Sun during the day, and/or by infrared radiation from relatively warm surface of the Earth at night.] The system would feature controllability of altitude for taking scientific data, landing, or taking advantage of favorable winds for relocation. The system would be designed for long life, but would weigh less (and therefore cost less) than do previously developed long-life balloon systems.

Posted in: Briefs, TSP

Read More >>

Direct Methanol Fuel Cells With Aerosol Feed

Relative to liquid feed, aerosol feed would result in less methanol crossover. Direct methanol fuel cells that would function with aerosol feed (instead of all-gas or all-liquid feed) have been proposed. As explained below, aerosol feed would afford the advantages of liquid feed, while reducing or eliminating some of the disadvantageous effects of liquid feed.

Posted in: Briefs, TSP

Read More >>

DNS of a Supercritical H2/O2 Mixing Layer

This report discusses direct numerical simulations (DNS) of a mixing layer between supercritical flows of oxygen and hydrogen. The governing conservation equations were those of fluctuation- dissipation (FD) theory, in which low-pressure typical transport properties (viscosity, diffusivity and thermal conductivity), are complemented, at high pressure, by a thermal-diffusion factor.

Posted in: Briefs, TSP

Read More >>

Hand-Held Optoelectronic Particulate Monitors

Data on concentrations and sizes are obtained from diffraction of light. Optoelectronic instruments are being developed for use in measuring the concentrations and sizes of microscopic particles suspended in air. The instruments could be used, for example, to detect smoke, explosive dust in grain elevators, or toxic dusts in industrial buildings. Like some older, laboratory-bench-style particulate monitors, these instruments are based on diffraction of light by particles. However, these instruments are much smaller; exploiting recent advances in optics, electronics, and packaging, they are miniaturized into compact, hand-held units.

Posted in: Briefs, TSP, ptb catchall, Tech Briefs, Photonics

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.