Special Coverage

Lightweight, Flexible Thermal Protection System for Fire Protection
High-Precision Electric Gate for Time-of-Flight Ion Mass Spectrometers
Polyimide Wire Insulation Repair System
Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine
Aerofoam
Wet Active Chevron Nozzle for Controllable Jet Noise Reduction
Magnetic Relief Valve
Active Aircraft Pylon Noise Control System
Unmanned Aerial Systems Traffic Management
Home

Software for Simulating Two-Phase Systems

Møtran (signifying "multi-phase transient") is a package of software for simulating flows in two-phase (gas/liquid) fluid systems like networks of such components as pipes, T junctions, pumps, evaporators, and condensers. The software is based on a two-fluid formulation that can accommodate unequal velocities and temperatures for the two phases. Møtran provides for single-phase, bubbly, slug, stratified, and annular flow regimes. Mechanistic models are used for establishing the boundaries between flow regimes and for constitutive relations that represent wall shear, interfacial shear, wall heat transfer, interfacial heat transfer, and phase change. Constitutive models are provided for each of the flow regimes, and all are selected and calculated dynamically during solution for each grid point in the network. The software is applicable at all levels of gravitation, whether steady or time varying. Møtran includes a state-of-the-art graphical user interface (GUI) and an integrated fluid-property database. The user assembles the representation of the fluid system (which can be of arbitrary topology) through drag-and-drop operations on the GUI. The software predicts pressures, volume fractions, temperatures, and velocities of the phases throughout the system.

Posted in: Briefs, Physical Sciences

Read More >>

Software for Improved Processing of DRWP Signals

The Automated Adaptive Signal Processing (AASP) computer program extracts wind data from the outputs of Doppler-radar wind profilers (DRWPs). Unlike prior software used for this purpose, AASP does not rely on manual intervention to prevent a DRWP system from locking onto and tracking interfering signals (e.g., signals from side lobes of radar beams). AASP identifies interference signals in the range-gated spectra produced by a DRWP, then tracks the height- and time-continuous atmospheric signal in each radar beam. AASP then combines the radial velocity components from three or five beams and computes the horizontal and vertical wind components. AASP produces high-quality wind profiles within a single radar cycle, without need for averaging for quality control. It also calculates an indication of the level of confidence with each wind estimate. The single-cycle capability enables users to detect temporal shifts in wind earlier and with greater confidence than was possible by use of prior software. AASP comprises two coupled software subsystems: (1) a subsystem that implements signal-processing algorithms and (2) a subsystem that provides a quality-control capability and that generates displays of spectra, of wind estimates, and of the performances of the DRWP hardware.

Posted in: Briefs, Physical Sciences

Read More >>

Large-Aperture Telescope Synthesized From Small Mirrors

A report proposes a design concept for synthesizing a reflecting telescope with a large-aperture (diameter ≈100 m) primary mirror from a sparse arrangement of four smaller (diameter ≈10 m) primary mirrors. The telescope would be placed in orbit for viewing Earth with high resolution. The primary and secondary mirrors would be mounted on a lightweight structure that would be deployed in orbit.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Uplink/Downlink Spacecraft Radio Occultation Measurements

A report proposes a method to increase the accuracy of Doppler measurements made at the beginnings and endings of Earth/spacecraft radio occultations. Such measurements can reveal structural details of occulting objects in outer space. Heretofore, one-way measurements have been used, and have been subject to degradation of accuracy by frequency fluctuations of an onboard oscillator.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Integrated Environmental Monitoring Instrument

This is a semiautonomous reference instrument with radio-communication and networking capability. A miniature, battery-powered, semiautonomous environmental monitoring instrument contains advanced meteorological sensors, a Global Positioning System (GPS) receiver for determining its position, radio-communication circuitry, and a controller that performs measurement, control, and data-communication interface functions. The instrument could serve as a high-accuracy radiosonde, though its intended use is in providing reference measurements for calibration and comparison of ordinary radiosondes.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Molten-Carbonate Electrolyzers for Making CO and O2

Molten-carbonate fuel cells would be operated in reverse. Electrochemical cells in which molten carbonates would serve as electrolytes have been proposed for use in electrolyzing CO2. The proposal was made in an effort to implement a concept of in situ resource utilization (ISRU) for the exploration of Mars; the basic idea is to generate CO (if needed as a fuel) and O2 (for oxidizing fuel and/or for breathing) by electrolysis of CO2 from the Martian atmosphere. On Earth, molten-carbonate electrolyzers could be used to make breathable O2 for medical use, pure O2 for oxidizing surfaces of semiconductor chips, and CO as a feedstock for synthesis of alcohols and hydrocarbons. In both terrestrial and spacecraft life-support systems, the electrolyzers could be used to regenerate breathable O2 from CO2.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

Improved Spherical Energy Analyzer

An improved spherical energy analyzer (a type of electrostatic mass spectrometer) is under development for use in analyzing a beam of ions generated by a Hall thruster. The major improvement, relative to a commercial spherical energy analyzer, is the addition of a quadrupole stage (with refocusing electron optics) for separating ions of different charge states. The development work also includes efforts to make the instrument smaller and lighter than the commercial version in order to make it possible to translate and rotate the instrument through the ion beam inside a vacuum chamber that contains the Hall thruster.

Posted in: Briefs, TSP, Physical Sciences

Read More >>

White Papers

2016’s Best Practices for NPI and NPD Success
Sponsored by Arena Solutions
The Simple Guide to a Life Science Recall
Sponsored by Verse Solutions
Optimizing Performance with Technology Embedded Apparel
Sponsored by Intercomp
How to Prevent Step Losses with Stepper Motors
Sponsored by MICROMO
How to Manage Heat in Modular, COTS Enclosures
Sponsored by Elma Electronic
Optimize Production for Agile Manufacturing
Sponsored by Stratasys

White Papers Sponsored By:

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.