Special Coverage

Home

Automated Purgatoid Identification

An algorithm was developed that automatically processes images captured by the HiRISE camera on the Mars Reconnaissance Orbiter to identify and locate the presence of purgatoids in monochrome images.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Interplanetary CubeSats

A report describes upgraded CubeSat satellite elements for the interplanetary environment, with solar sail propulsion and the interplanetary superhighway for navigation and maneuvering. They can host small, capable instruments and optical telecommunications on a mission to map the composition of a sequence of near-Earth asteroids and planetary bodies.

Posted in: Physical Sciences, Briefs, TSP

Read More >>

Novel Hemispherical Dynamic Camera for EVAs

A novel optical design for imaging systems is able to achieve an ultra-wide field of view (UW-FOV) of up to 208°. The design uses an integrated optical design (IOD). The UW-FOV optics design reduces the wasted pixels by 49% when compared against the baseline fisheye lens. The IOD approach results in a design with superior optical performance and minimal distortion.

Posted in: Physical Sciences, Imaging, Briefs

Read More >>

Technique for Finding Retro-Reflectors in Flash LIDAR Imagery

Orbital rendezvous and docking of two spacecraft is a topic of continued interest to NASA. For crewed missions, it is frequently the case that the target is cooperative (i.e., is equipped with some sort of navigation aid). If one of the relative navigation instruments is a Flash LIDAR, then this aid may be a suite of retro-reflectors. One of the most difficult aspects of this problem (especially at close range) is finding the retro-reflectors in a Flash LIDAR image amongst a substantial amount of clutter.

Posted in: Physical Sciences, Briefs

Read More >>

Spacecraft Line-of- Sight Stabilization Using LWIR Earth Signature

Applications could include remote science and planetary science missions, Earth surveillance and reconnaissance, and deep space optical communication. Until the time of this reporting, when a space vehicle required a reference signal for inertial pointing, the choices were a signal beacon from an Earth location, the Earth radiance in the visible spectrum, or a star tracker. However, limitations can arise from using these techniques. For example, the signal beacon suffers from limited signal power (either in RF or optical) and will constrain the application to limited ranges, errors due to stray-light and centroiding limit the accuracy of a star tracker, and the spatial/temporal variability of the Earth’s albedo and its illumination by the Sun introduces limitations when used in the visible or near infrared light.

Posted in: Physical Sciences, Briefs

Read More >>

Transportable Instrumentation Package for In-Vehicle On-Road Data Acquisition

This portable data acquisition system is a viable alternative to first developing a fully instrumented test vehicle. The study of driver behavior can provide a wealth of information that can be useful in the design of automobiles including active safety features and functions. There may be differences in driver behavior, as reflected in driver state, and these differences may be confounded by a driver’s condition. Much can be learned from studies that look at driver state and condition to answer questions such as how vehicle features and functionality could be designed to complement the driver’s capabilities and limitations in the vehicle. Also, a better understanding could be gained to determine how, or if at all, a safety feature’s characteristics should be modified to accommodate a driver’s condition.

Posted in: Physical Sciences, Data Acquisition, Briefs

Read More >>

Variable Camber Aerodynamic Control Surfaces and Active Wing Shaping Control

Concepts are examined to reduce aerodynamic drag and decrease fuel consumption. A new concept of aircraft aerodynamic control surfaces has been developed in connection with another new concept of active wing shaping control for reducing aircraft drag that will result in less fuel burn. The first concept is referred to as a variable camber continuous trailing edge flap or, alternatively, a variable camber continuous leading edge slat. The variable camber trailing edge flap (or leading edge slat) comprises multiple chord-wise segments (three or more) to form a cambered flap surface, and multiple span-wise segments to form a continuous trailing edge (or leading edge) curve with no gaps that could be prescribed by a mathematical function or the equivalent with boundary conditions enforced at the end points to minimize tip vorticities. Aerodynamic simulations have shown that this type of flap can reduce aerodynamic drag substantially as compared to a conventional flap. A new active wing-shaping control concept is proposed in connection with the presently disclosed variable camber continuous trailing edge flap (or leading edge slat). The active wing-shaping control is designed to change a wing shape in-flight in order to achieve a desired optimal wing shape for optimal drag reduction.

Posted in: Physical Sciences, Briefs

Read More >>

White Papers

Solar Electric Systems – Power Reliability
Sponsored by SunWize
Lubricant Selection: What Every Design Engineer Needs to Know
Sponsored by Magnalube
Estimating the Effort and Cost of a DO-254 Program
Sponsored by Logic Circuit
FPGA Computing for Speed and Flexibility
Sponsored by Acromag
Learn LED Test Techniques
Sponsored by Keithley
Avoid the High Cost of Quality Failure
Sponsored by Arena Solutions

White Papers Sponsored By: