Special Coverage

Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applicationst
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection
High-Precision Electric Gate for Time-of-Flight Ion Mass Spectrometers
Polyimide Wire Insulation Repair System
Distributed Propulsion Concepts and Superparamagnetic Energy Harvesting Hummingbird Engine

Green PCB Removal From Sediment Systems (GPRSS)

A redeployable polymer blanket attacks and adsorbs PCBs. John F. Kennedy Space Center, Florida A number of NASA centers have used polychlorinated biphenyl (PCB)-containing materials that have subsequently ended up in surrounding sediment systems. Each center is evaluating remediation technologies that may have application to their environmental problems; however, there are only limited options available for application to sediments containing PCBs. Currently, the most utilized option is dredging followed by disposal in a Toxic Substances Control Act (TSCA)-regulated landfill. This is an expensive option with long-term liability implications for simply enacting a waste transfer remedy (as opposed to a waste destruction alternative), as well as possible contaminant re-introduction into the water table. PCB contamination in sediment systems is a global issue, posing ecological and human health risks.

Posted in: Briefs, Physical Sciences, Ethanol, Medical, health, and wellness, Waste disposal, Magnesium, Polymers, Hazardous materials


Internalization of Non-Spherical Particles

This device enhances proliferation of cell cultures in a rotating bioreactor. This invention specifically relates to an interchangeable sleeve that encompasses a rotating, substantially cylindrical bioreactor. The sleeve supplies a time-varying electromagnetic force of from 0.05 to 0.5 gauss to the culture chamber of the bioreactor in order to increase cell growth and proliferation within the rotating bioreactor. The sleeve comprises a substantially cylindrical and rigid, electrically conductive material wound in a cylindrical shape, and is capable of being connected to a pulsating, time-varying electromagnetic current.

Posted in: Briefs, Physical Sciences, Electromagnetic compatibility, Medical, health, and wellness


System for Observing Dynamic Atmospheric Phenomena

System has drastically increased transmitter capability at much reduced cost. NASA’s Jet Propulsion Laboratory, Pasadena, California Existing observing systems are inadequate to measure a variety of dynamic atmospheric processes. Ground-based or airborne systems do not observe over sufficiently large regions to capture the context or time history of many phenomena. Space-based systems do not observe a specific region over sufficient duration with sufficient spatial resolution to capture the essential features of the phenomena. Radar systems are limited in what they can observe because of the need for scattering sources to be present in the observed volume.

Posted in: Briefs, Physical Sciences, Antennas, Data acquisition, Test equipment and instrumentation, Satellites


Covariance Analysis of Astrometric Alignment Estimation Architectures for Precision Dual-Spacecraft Formation Flying

A paper highlights analysis of proposed navigation systems and architectures for achieving precise dual-spacecraft astrometric alignment. The dynamics of dual-spacecraft relative motion, within a restricted n-body problem framework, are shown to reduce to a simple linear form for use in estimation filter design and error analysis for a deep space mission application, such as MASSIM (Milli-Arc-Second Structure Imager). This model is augmented with simplified measurement process models of relevant measurement types. These include inertial sensors, such as accelerometers and rate gyros, as well as optical alignment sensors, such as star and laser beacon trackers. A consider-state covariance analysis tool is developed from these process models and used to study the performance of proposed estimation architectures for the MASSIM application. This work develops a generic analysis methodology for evaluation of dual-spacecraft relative navigation systems and architectures for precise dual-spacecraft astrometric alignment.

Posted in: Briefs, TSP, Physical Sciences, Mathematical models, Architecture, Sensors and actuators, Spacecraft guidance


Automated Purgatoid Identification

An algorithm was developed that automatically processes images captured by the HiRISE camera on the Mars Reconnaissance Orbiter to identify and locate the presence of purgatoids in monochrome images.

Posted in: Briefs, TSP, Physical Sciences, Mathematical analysis, Computer software and hardware, Imaging and visualization, Identification, Satellites


Interplanetary CubeSats

A report describes upgraded CubeSat satellite elements for the interplanetary environment, with solar sail propulsion and the interplanetary superhighway for navigation and maneuvering. They can host small, capable instruments and optical telecommunications on a mission to map the composition of a sequence of near-Earth asteroids and planetary bodies.

Posted in: Briefs, TSP, Physical Sciences, Imaging and visualization, Satellite communications, Solar rocket engines, Test equipment and instrumentation, Satellites


Spacecraft Line-of- Sight Stabilization Using LWIR Earth Signature

Applications could include remote science and planetary science missions, Earth surveillance and reconnaissance, and deep space optical communication. Until the time of this reporting, when a space vehicle required a reference signal for inertial pointing, the choices were a signal beacon from an Earth location, the Earth radiance in the visible spectrum, or a star tracker. However, limitations can arise from using these techniques. For example, the signal beacon suffers from limited signal power (either in RF or optical) and will constrain the application to limited ranges, errors due to stray-light and centroiding limit the accuracy of a star tracker, and the spatial/temporal variability of the Earth’s albedo and its illumination by the Sun introduces limitations when used in the visible or near infrared light.

Posted in: Briefs, Physical Sciences, Spacecraft guidance


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.