Special Coverage

Home

Scatter-Reducing Sounding Filtration Using a Genetic Algorithm and Mean Monthly Standard Deviation

Retrieval algorithms like that used by the Orbiting Carbon Observatory (OCO)-2 mission generate massive quantities of data of varying quality and reliability. A computationally efficient, simple method of labeling problematic datapoints or predicting soundings that will fail is required for basic operation, given that only 6% of the retrieved data may be operationally processed. This method automatically obtains a filter designed to reduce scatter based on a small number of input features.

Posted in: Physical Sciences, Software, Briefs, TSP

Read More >>

GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

This technique improves weather-forecasting operations. Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Administration National Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting.

Posted in: Physical Sciences, Data Acquisition, Briefs, TSP

Read More >>

High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges.

Posted in: Physical Sciences, Data Acquisition, Briefs

Read More >>

Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments

Electronics are shared between the instruments. The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar’s RF electronics and digital receiver with t he radiometer, while allowing for simultaneous operation of the ra da r and radiometer.

Posted in: Physical Sciences, Data Acquisition, Briefs, TSP

Read More >>

Cryogenic Liquid Sample Acquisition System for Remote Space Applications

There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application.

Posted in: Physical Sciences, Data Acquisition, Briefs, TSP

Read More >>

A Short-Range Distance Sensor with Exceptional Linearity

Potential uses exist in the areas of micromachining and nanotechnology. A sensor has been demonstrated that can measure distance over a total range of about 300 microns to an accuracy of about 0.1 nm (resolution of about 0.01 nm). This represents an exceptionally large dynamic range of operation — over 1,000,000. The sensor is optical in nature, and requires the attachment of a mirror to the object whose distance is being measured.

Posted in: Physical Sciences, Briefs

Read More >>

Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

This detector can be used for monitoring fires, microbial sterilization/disinfection processing, and spectrophotometry analysis. Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals.

Posted in: Physical Sciences, Briefs, TSP

Read More >>