Special Coverage

Home

GPU Lossless Hyperspectral Data Compression System

Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA®.

Posted in: Briefs, Electronics & Computers

Read More >>

Calculation of Operations Efficiency Factors for Mars Surface Missions

Several modeling methods are examined. For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a “sol” is a Martian day), activities are described in terms of “sol types” that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol’s results to feed into the activity planning (“ground in the loop”), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time “walks” relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

Fuzzy Neuron: Method and Hardware Realization

Simple and effective learning functions and adaptive elements can be placed into small hardware systems to include instruments for space, bioimplantable devices, and stochastic observers.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency-modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search.

Posted in: Briefs, Electronics & Computers

Read More >>

Robust, Optimal Subsonic Airfoil Shapes

A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

Results can be used to develop better empirical models. The water-vapor continuum absorption plays an important role in the radiative balance in the Earth’s atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the farwings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

Posted in: Briefs, TSP, Electronics & Computers

Read More >>

Kalman Filter Input Processor for Boresight Calibration

The new software brings this technology to the industrial level. Ka-band ranging provides the phase center (PC) to phase center range, which needs to be converted to the center of mass (CM) to center of mass range. Nominally, both PC and CM lie on the line connecting the spacecraft GRAIL A and GRAIL B. In this case, the conversion should be done simply by adding the CM-to-PC distance L to the measured range for both spacecraft. However, due to various technical reasons, such as displacement of the true CM from its nominal position in the SRF, or spacecraft attitude fluctuations, the PC and CM define a unit vector that may be different from the nominal line of sight. The objectives of the software are to determine the actual line of sight direction for each spacecraft and correct the previously recorded range data, and to provide instructions for how to maneuver each spacecraft to make necessary attitude corrections.

Posted in: Briefs, Electronics & Computers

Read More >>