Special Coverage

Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing
Mechanoresponsive Healing Polymers
Variable Permeability Magnetometer Systems and Methods for Aerospace Applicationst
Evaluation Standard for Robotic Research
Small Robot Has Outstanding Vertical Agility
Smart Optical Material Characterization System and Method
Lightweight, Flexible Thermal Protection System for Fire Protection

Delay Banking for Managing Air Traffic

Delay credits could be expended to gain partial relief from flow restrictions. Delay banking has been invented to enhance air-traffic management in a way that would increase the degree of fairness in assigning arrival, departure, and en-route delays and trajectory deviations to aircraft impacted by congestion in the national airspace system. In delay banking, an aircraft operator (airline, military, general aviation, etc.) would be assigned a numerical credit when any of their flights are delayed because of an air-traffic flow restriction. The operator could subsequently bid against other operators competing for access to congested airspace to utilize part or all of its accumulated credit. Operators utilize credits to obtain higher priority for the same flight, or other flights operating at the same time, or later, in the same airspace, or elsewhere. Operators could also trade delay credits, according to market rules that would be determined by stakeholders in the national airspace system.

Posted in: Briefs, Information Sciences, Air traffic control


Spline-Based Smoothing of Airfoil Curvatures

Spurious curvature oscillations and bumps are suppressed. Constrained fitting for airfoil curvature smoothing (CFACS) is a spline-based method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface.

Posted in: Briefs, TSP, Information Sciences


Reducing Spaceborne-Doppler-Radar Rainfall-Velocity Error

A combined frequency- time (CFT) spectral moment estimation technique has been devised for calculating rainfall velocity from measurement data acquired by a nadir-looking spaceborne Doppler weather radar system. Prior spectral moment estimation techniques used for this purpose are based partly on the assumption that the radar resolution volume is uniformly filled with rainfall. The assumption is unrealistic in general but introduces negligible error in application to airborne radar systems. However, for spaceborne systems, the combination of this assumption and inhomogeneities in rainfall [denoted non-uniform beam filling (NUBF)] can result in velocity measurement errors of several meters per second.

Posted in: Briefs, Information Sciences, Measurements, Radar, Water, Weather and climate


Stochastic Analysis of Orbital Lifetimes of Spacecraft

A document discusses (1) a Monte-Carlo-based methodology for probabilistic prediction and analysis of orbital lifetimes of spacecraft and (2) Orbital Lifetime Monte Carlo (OLMC) — a Fortran computer program, consisting of a previously developed long-term orbit-propagator integrated with a Monte Carlo engine.

Posted in: Briefs, TSP, Information Sciences


Visual Data Analysis for Satellites

The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization.

Posted in: Briefs, Information Sciences, Statistical analysis, Imaging and visualization, Data management, Satellites


A Data Type for Efficient Representation of Other Data Types

Some obstacles to programming of parallel computers are removed. A self-organizing, monomorphic data type denoted a sequence has been conceived to address certain concerns (summarized below) that arise in programming parallel computers. [“Sequence” as used here should not be confused with “sequence” as the word is commonly understood or with “sequence” as used elsewhere to denote another, polymorphic data type that is also relevant to computer programming.] A sequence in the present sense can be regarded abstractly as a vector, set, bag, queue, or other construct. A sequence is defined in terms of the behavior of the operators that can be applied to it without any foreknowledge of the underpinnings of its representation or particular implementation.

Posted in: Briefs, Information Sciences, Architecture, Data management


Providing Goal-Based Autonomy for Commanding a Spacecraft

A computer program for use aboard a scientific- exploration spacecraft autonomously selects among goals specified in high-level requests and generates corresponding sequences of low-level commands, understandable by spacecraft systems. (As used here, “goals” signifies specific scientific observations.) From a dynamic, onboard set of goals that could oversubscribe spacecraft resources, the program selects a non-oversubscribing subset that maximizes a quality metric. In an early version of the program, the requested goals are assumed to have fixed starting times and durations. Goals can conflict by exceeding a limit on either the number of separate goals or the number of overlapping goals making demands on the same resource.

Posted in: Briefs, TSP, Information Sciences, Automatic pilots, Computer software and hardware, Spacecraft guidance, Logistics


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.