A wide range of commercial applications use cameras with a zooming mechanism. Perhaps the most ubiquitous is the camera phone. Camera phones may have an optical zoom, a digital zoom, or both. What’s the difference? An optical zoom actually changes the effective focal length of the camera lens such that the original image is magnified and could be captured by the image sensor (CCD or CMOS). With greater magnification, the light is spread across the entire image sensor and all of the pixels can be used. An optical zoom could be interpreted as a true zoom that will improve the quality of pictures captured.
Consequently, optical zooming is an important mechanism in determining the true zooming power of a camera phone that isn’t losing any image data. Having accurate lens positioning control in optical zoom is crucial to help ensure quality in an enlarged image. Figure 1 illustrates a typical example of the zooming mechanism in a camera module inside a camera phone. Lenses are aligned such that an image could be focused onto the image sensor (CMOS or CCD). The zooming mechanism involves synchronization movement between two or more lenses. By varying the distance between the lenses, the actual effective focal length of the camera lens changes accordingly. Hence, a magnified image would be captured by a CCD or CMOS image sensor.
To simplify the wiring process, encoders are mounted at the camera module shell and remain in a fixed position. The moving portion is the codestrip, which acts as the translator for the lens’ linear movement. Casting the window and bar image back to the encoder provides feedback on all the necessary information for prompt and accurate lens positioning. With a conventional zooming mechanism, a combination of mechanical cam and gearing is a common approach for lens position controlling. However, such an approach will suffer unavoidable wear and tear issues and the accuracy of lens positioning will degrade over time and directly impact the quality of zoomed images.
An AEDR-8400 encoder by Avago Technologies can help resolve these zooming issues. The feedback from the encoder provides necessary information for real-time calibration whenever there is any back-lashing from gears and mechanical cams. This can help ensure precise and accurate lens positioning. Furthermore, in some customized camera module designs, removing the mechanical cam is possible (Figure 2).
Incorporating the AEDR-8400 encoder into a piezo-actuator camera module, for example, can essentially eliminate the use of mechanical cams. And, because there is no mechanical cam involvement, there is no fixed zooming position and the new camera module system can now have a continuous zooming function (Figure 3).
In terms of power consumption, piezo-actuator systems tend to consume less power compared to voice coil and servo solutions. Also, a piezo-actuator solution could help keep the noise and vibration level to a minimum, which a stepper motor or voice coil solution cannot achieve.
Encoder Operating Principle
When the codestrip moves in one direction, Channel A leads Channel B by 90 electrical degrees. When the codestrip moves in the other direction, Channel B will lead Channel A by the same amount. This concept is illustrated in Figure 7. Resolution higher than that of the codestrip is achievable via quadrature decoding of the encoder outputs, where different levels of decoding exist. Counting every rising edge of one channel (e.g., Channel A) is called 1X decoding. The codestrip resolution can be doubled by counting every rising and falling edge of one channel to further increase the resolution. This is called 2X decoding. When every transition of both Channel A and Channel B is utilized (or every logic state), 4X decoding is achievable.
The Codestrip
The codestrip surface must be reflective and specular (mirror-like) so that the image of the pattern is reflected back onto the photo-diodes of the AEDR-8400 en coder. Potential materials include metal and reflective film. One method to determine whether the code strip will work with the reflective optical encoder is by using a Scatterometer.
Reflective surfaces with a specular reflectance of 60 percent or higher, as measured by the device, are compatible with the reflective encoder. The non-reflective areas should have a reflectance of less than 10 percent.
When testing for specular reflectance, reflective surfaces should be tested separately from non-reflective surfaces. It is recommended to test the reflective surface by itself and to then test the non-reflective surface, and to not perform tests on the patterned surface since this will only provide an average reflectance across the pattern.
Future Encoder Technology
New encoder technology is currently being developed that integrates an index channel to the two existing channels of digital output. This index channel will help eliminate the need for photo-interrupters to indicate the limit or end of travel range for the lenses. In addition, the next-generation encoder will feature a built-in interpolator that allows users to set the interpolation factors to one, two or four times the base resolution of 304LPI.
This article was written by Foo-Hong Thong, Worldwide Marketing Manager, Motion Control Products Division, Avago Technologies (San Jose, CA). For more information, contact Mr. Thong at