Fuelled by an increasing demand for bandwidth combined with a continued drive towards cost and size reduction, larger scale photonics integrated circuits are now clearly breaking through. For example, fiber optics networks are rapidly embracing 40Gbps and 100Gbps data rates, where the transmitters and receivers often include photonic integrated circuits. And the cost and size reduction in 10Gbps transceivers has driven several companies to successfully leverage photonic chips. The growing FTTH (fiber to the home) market is driving demand for integrated photonic splitters as well as monolithically integrated BiDi transceivers. And there are exciting applications in fiber sensing and bioscience that are now benefiting from optical chips as well.
Photonics Design Automation
In the electronics industry, the use of “Electronics Design Automation” (EDA) is widespread. A foundry offers an extensive set of building blocks (BBs), which a designer can use to create a complex device. These building blocks and their combination are guaranteed to work as expected if the given design rules are respected. Software supports each step in the design process, from physical analysis to layout and design rule checks before the final design is sent to the foundry. Advanced simulation tools can be directly linked to this EDA environment and greatly assist the designer in his work.
Since the building blocks of one foundry are often very similar to those of other foundries, many designs can be easily ported from one foundry to another. Such a transfer can be done with hardly any changes to the chip performance, but with significant changes to the mask layout in order to accommodate different processes at the other foundry.
Integrated Product Creation Process
This iPCP has been implemented in several European projects by developing foundry specific design kits. These kits allow users to benefit from mature technologies, while avoiding recurring costs by streamlining the discussions between the designers and the engineers at the foundry.
Using Photonic Design Automation Tools
One particular advantage of working with Photonics Design Automation is that a foundry can make available unique building blocks that are covered by patents or trade secrets. The unique building block is shown as a bounding box that hides what is inside the box, but does detail the location of input and output waveguides as well as the functionality of the building block through a wavelength dependent scattering matrix.
Once a satisfactory design has been created with a specific foundry and package in mind, it can be transferred via the PDA framework[1] to MaskEngineer or other mask layout software. The mask layout can then be further optimized, after which the PIC design is translated into mask files. During this process, automatic post processing takes place that obeys design rules set by the foundry. For example, a waveguide may have to be wider on the mask than in the original design in order to compensate for a known amount of underetch. Or the definition of a waveguide may involve a local mask inversion if the waveguide is created using lift-off rather than through etching. In addition, the PDA framework will perform foundry specific design rule checks (DRC) at the logical and mask levels. The design can, for example, be checked for the minimum allowable bending radius. Or a check is performed to ensure that metalization and waveguide layers are neither overlapping nor closer than a minimum distance.
Multi Project Wafer Runs
While Photonic Design Automation delivers indispensable tools to streamline chip runs for foundries and creates a first time right environment for PIC designers, PDA brings an additional reduction of development costs by enabling Multi Project Wafer (MPW) runs. In a Multi Project Wafer run, the costs for chip fabrication, masks and set-up time are shared between multiple users. This significantly reduces the barrier to photonic integration and allows photonic chips to be introduced for smaller volume applications than hitherto possible[2].
Photonics Design Automation[2] as described in this article has been successfully applied to (MPW) runs in InP[3], TriPleX[4], as well as silicon photonics technologies[5]. Moreover, the effective use of PDA in well over 100 designs using six different foundries and two packaging providers in less than a year demonstrates that photonics can indeed greatly benefit from leveraging these automation tools. Note that PDA is not only indispensable for photonic foundries, the same approach can be just as beneficial for an in-house wafer fab. The PDA framework also allows third parties to develop versatile libraries of building blocks or to introduce convenient plug-ins, such as the two Arrayed Waveguide Grating plug-ins that were actively used in the above mentioned MPW runs.
Bright Outlook
The biggest immediate benefit from deploying reusable building blocks in stable and mature processes, independent of whether it’s in a commercial foundry or an in-house fab, is that it improves yield and significantly brings down the costs of the chips as well as the associated development. This in itself is huge, because there are many applications, such as FTTH or data warehousing, where many millions of photonic chips can be deployed, but where the cost of optics has often still proven to be a barrier. But beyond bringing down the costs for high-volume applications, Photonics Design Automation also allows photonic chips to be introduced to a wider audience. There any many applications such as in bioscience, defense and fiber sensing, where volumes are smaller but that could benefit enormously from using integrated photonic chips. And PDA may just be the tool that now brings within reach those lower volume, but equally important, applications.
This article was written by Twan Korthorst, MSc.EE, CEO, and Remco Stoffer, PhD, Product Specialist, PhoeniX Software (Enschede, Netherlands). For more information, contact Mr. Korthorst or Mr. Stoffer at
References
- Photonic Design Kits: PhoeniX Software
- M.K. Smit et al: ‘Generic foundry model for InP-based photonics,’ IET Optoelectronics, Vol 5(2011), No. 5, p. 187-194
- InP MPW brokering organisation: JePPIX
- TriPleX foundry: LioniX
- SOI MPW brokering organisation: ePIXfab