This work addresses distributed data management and access — dynamically configurable high-speed access to data distributed and shared over wide-area high-speed network environments. An offload engine NIC (network interface card) is proposed that scales at n×10- Gbps increments through 100-Gbps full duplex. The Globus de facto standard was used in projects requiring secure, robust, high-speed bulk data transport. Novel extension mechanisms were derived that will combine these technologies for use by GridFTP, bandwidth management resources, and host CPU (central processing unit) acceleration. The result will be wire-rate encrypted Globus grid data transactions through offload for splintering, encryption, and compression.

As the need for greater network bandwidth increases, there is an inherent need for faster CPUs. The best way to accelerate CPUs is through a network acceleration engine. Grid computing data transfers for the Globus tool set did not have wire-rate encryption or compression. Existing technology cannot keep pace with the greater bandwidths of backplane and network connections. Present offload engines with ports to Ethernet are 32 to 40 Gbps f-d at best. The best of ultra-high-speed offload engines use expensive ASICs (application specific integrated circuits) or NPUs (network processing units). The present state of the art also includes bonding and the use of multiple NICs that are also in the planning stages for future portability to ASICs and software to accommodate data rates at 100 Gbps.

The remaining industry solutions are for carrier-grade equipment manufacturers, with costly line cards having multiples of 10-Gbps ports, or 100-Gbps ports such as CFP modules that interface to costly ASICs and related circuitry. All of the existing solutions vary in configuration based on requirements of the host, motherboard, or carrier-grade equipment.

The purpose of the innovation is to eliminate data bottlenecks within cluster, grid, and cloud computing systems, and to add several more capabilities while reducing space consumption and cost. Provisions were designed for interoperability with systems used in the NASA HEC (High-End Computing) program. The new acceleration engine consists of state-of-the-art FPGA (field-programmable gate array) core IP, C, and Verilog code; novel communication protocol; and extensions to the Globus structure. The engine provides the functions of network acceleration, encryption, compression, packet-ordering, and security added to Globus grid or for cloud data transfer. This system is scalable in n×10-Gbps increments through 100-Gbps f-d. It can be interfaced to industry-standard system-side or network-side devices or core IP in increments of 10 GigE, scaling to provide IEEE 40/100 GigE compliance.

This work was done by James Awrach of SeaFire Micros, Inc. for Goddard Space Flight Center. GSC-15885-1