In nonvolatile random-access memory (RAM) circuits of a proposed type, digital data would be stored in analog form in ferroelectric field-effect transistors (FFETs). This type of memory circuit would offer advantages over prior volatile and nonvolatile types:

  • In a conventional complementary metal oxide/semiconductor static RAM, six transistors must be used to store one bit, and storage is volatile in that data are lost when power is turned off. In a conventional dynamic RAM, three transistors must be used to store one bit, and the stored bit must be refreshed every few milliseconds. In contrast, in a RAM according to the proposal, data would be retained when power was turned off, each memory cell would contain only two FFETs, and the cell could store multiple bits (the exact number of bits depending on the specific design).
  • Conventional flash memory circuits afford nonvolatile storage, but they operate at reading and writing times of the order of thousands of conventional computer memory reading and writing times and, hence, are suitable for use only as off-line storage devices. In addition, flash memories cease to function after limited numbers of writing cycles. The proposed memory circuits would not be subject to either of these limitations.
  • Prior developmental nonvolatile ferroelectric memories are limited to one bit per cell, whereas, as stated above, the proposed memories would not be so limited.

The design of a memory circuit according to the proposal must reflect the fact that FFET storage is only partly nonvolatile, in that the signal stored in an FFET decays gradually over time. (Retention times of some advanced FFETs exceed ten years.) Instead of storing a single bit of data as either a positively or negatively saturated state in a ferroelectric device, each memory cell according to the proposal would store two values. The two FFETs in each cell would be denoted the storage FFET and the control FFET. The storage FFET would store an analog signal value, between the positive and negative FFET saturation values. This signal value would represent a numerical value of interest corresponding to multiple bits: for example, if the memory circuit were designed to distinguish among 16 different analog values, then each cell could store 4 bits. Simultaneously with writing the signal value in the storage FFET, a negative saturation signal value would be stored in the control FFET. The decay of this control-FFET signal from the saturation value would serve as a model of the decay, for use in regenerating the numerical value of interest from its decaying analog signal value.

The memory circuit would include addressing, reading, and writing circuitry that would have features in common with the corresponding parts of other memory circuits, but would also have several distinctive features. The writing circuitry would include a digital-to-analog converter (DAC); the reading circuitry would include an analog-to-digital converter (ADC). For writing a numerical value of interest in a given cell, that cell would be addressed, the saturation value would be written in the control FFET in that cell, and the non-saturation analog value representing the numerical value of interest would be generated by use of the DAC and stored in the storage FFET in that cell. For reading the numerical value of interest stored in a given cell, the cell would be addressed, the ADC would convert the decaying control and storage analog signal values to digital values, and an associated fast digital processing circuit would regenerate the numerical value from digital values.

This work was done by Todd MacLeod of Marshall Space Flight Center. For more information, download the Technical Support Package (free white paper) at www.techbriefs.com/tsp under the Semiconductors & ICs category.

This invention is owned by NASA, and a patent application has been filed. For further information, contact Sammy Nabors, MSFC Commercialization Assistance Lead, at This email address is being protected from spambots. You need JavaScript enabled to view it.. Refer to MFS-32208-1.