Various applications exist where high-pressure valves are required, but the problem for control of such valves lies in that they have to move against a strong pressure differential that may require significant force, energy, and large actuators. The solution to this problem is to take advantage of the in situ pressure differential to operate valves by opening small valves to change the pressure on either chamber of a hydraulic cylinder that is connected to the valve’s moving element.
The specific solution for application to oil down-hole flow consists of a 4-port valve that is able to connect the pressure of inlet P2 and outlet P1 to a cylinder actuator to drive a sleeve choke valve that controls the flow from the outside of the inner pipe to the inside. A small pump is inserted into the high-pressure (P2) connection line in order to produce additional pressure difference of p and to increase the P2 to P2 + p in case the pressure difference of P = P2 – P1 is not large enough. In this configuration, the 4-port valve has three positions for three different outcomes.
This work was done by Xiaoqi Bao, Stewart Sherrit, Mircea Badescu, Yoseph Bar-Cohen, and Jeffery L. Hall of Caltech for NASA’s Jet Propulsion Laboratory.
In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:
Innovative Technology Assets Management
JPL
Mail Stop 321-123
4800 Oak Grove Drive
Pasadena, CA 91109-8099
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Refer to NPO-48798.
This Brief includes a Technical Support Package (TSP).

Hydraulic High-Pressure Valve Controller Using the In Situ Pressure Difference
(reference NPO48798) is currently available for download from the TSP library.
Don't have an account?