A New Generation of Fiber-Coupling

Figure 2. Coherent has developed beam shaping assemblies that couple directly to a laser’s fiber output.
After many years of virtual technology stasis in bioinstrumentation beam delivery, the situation is now changing quite dramatically. The market pressure for this is the need to build cytometers (and other fluorescence-based instruments) capable of simultaneously detecting and analyzing an even greater number of fluorescent markers. In the clinical analysis sector, this will enable diseases such as HIV and metastatic cancer to be followed and profiled in unprecedented detail. But at the same time, system builders want to expand their market by making instruments more affordable and easy to use. These instruments also need to be very simple to field service and upgrade, e.g., by exchanging or adding lasers. With the existing fiber setup, each beam exiting its delivery fiber still has to be combined and/or shaped using dichroic optics and/or prism pairs. Moreover, the six axis mounts are known to be vulnerable to long-term drift due to physical shocks and thermal changes.

At the same time, a new generation of smart lasers has become available, such as the Coherent OBIS series. These are compact lasers in which the controller and laser are contained in a package having a maximum dimension of only 3 inches. Moreover, by using both laser diodes and the wavelength-scalable, optically pumped semiconductor laser (OPSL), OBIS products are available at an ever expanding range of wavelengths and output powers, optimized for exciting the latest fluorophores across the UV and visible. Yet, all these different wavelength lasers are packaged with a common optical, mechanical and electronic interface. For many instrument applications, these modules finally delivered the true plug and play operation that had been desired for many years.

In the past year, Coherent also introduced fiber coupled (OBIS FP) modules. Here, the laser is pre-aligned into the single- mode fiber, whose ferule is then permanently welded onto the laser itself. There are no mount adjustments that can ever creep or shift. This alignment ensures all aspects of the coupling are perfectly optimized, including matching numerical aperture and fiber facet preparation, for example. In developing these products, Coherent leveraged the telecom background of their fiber optic group to address another important issue. Specifically, many fiber coupled laser modules suffer early failure because of the high power density at the input and output facets, which must be just a few microns in diameter for single-mode operation. To avoid this limitation, Coherent uses a proprietary fiber in OBIS FP which has a single mode core, but significantly larger input and output facets, while maintaining single mode performance.

Learning from Telecom

Figure 3. Example of a fully packaged BSO where the output of three separate fibers are precision aligned by the use of V-groove technology.
Engineers at both laser manufacturers and cytometry manufacturers recognized that even optically demanding instruments like flow cytometers, where alignments must be held to a few microns, were now on the verge of plug and play operation too. The only remaining obstacle was alignment and beam-shaping of the fiber outputs into the instrument’s interaction zone. Again fiber delivery provided the solution. Engineers at Coherent developed beam shaping assemblies, coupling directly to a laser’s fiber output and delivering a Gaussian or”top-hat” beam profile. Compact and robust, these assemblies come pre-aligned and can be easily directed into the flow cell (Figure 2).

Then, borrowing from telecom technology to permanently hold multiple fibers using V-groove technology or PermAlign™ assembly techniques, Coherent also developed passive optic assemblies with multiple fiber inputs and with a pattern of output beams that is locked in during manufacture to meet application requirements. These concepts have now been implemented in a series of both standard and custom Beam Shaping Optical assemblies (BSOs). In the case of flow cytometry, a single BSO is designed and assembled to deliver a specific pattern of wavelengths, stripe dimensions and spacing which can be aligned with the flow cell as a single module (Figure 3).

The combined advent of fiber-coupled smart lasers and these new BSOs means that, two decades after instrument companies began to use fiber delivery for laser sources, they can finally exploit all the inherent capabilities of using fiber. Whether they are using one laser or ten, the beam(s) is always perfectly aligned.


Fiber-coupling has certainly come a long way from the days of trained optical technicians carefully adjusting knobs on a fiber launching mount. Moreover, this new plug and play approach is more robust and compact, and will lower cost of ownership by reducing both downtime and service costs. Better performance and reduced costs — a combination both instrument builders and their customers are ready to embrace.

This article was written by Dan Callen, Product Line Manager, and Michele Winz, Ph.D., Manager: Photonics Engineering, Coherent Inc., (Santa Clara, CA). For more information, contact Mr. Callen at dan. This email address is being protected from spambots. You need JavaScript enabled to view it., Mr. Winz at This email address is being protected from spambots. You need JavaScript enabled to view it., or visit

« Start Prev 1 2 Next End»

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.