Modern fiber optics have undergone remarkable advances since their development in the 1960s. The growing demand for fiber-optic cable, especially in the telecommunications industry, has led to an increase in high-volume production of optical fiber. New high-irradiance UV LED curing systems widely deployed in the last decade for the assembly of electronics, optics, and medical devices are now being utilized by fiber-optics manufacturers as a complement or an alternative to current technology to help meet the increasing demand. At the same time, the high efficiency, long lifetime, and low cost of operation of UV LED curing systems will significantly reduce the operational cost in this high-speed manufacturing process.
In current fiber-optic manufacturing processes, high-intensity UV arc lamp or UV microwave excited lamp systems are used to cure the fiber coatings. These systems generate UV light by passing electric arcs or microwaves through a mercury and/or metal halide-filled glass tube, resulting in high-pressure mercury vapor. UV lamps produce a very wide spectral output from below 200 nm to above 800 nm, which is effective for curing current fiber optic coatings. However, these lamps suffer from a number of process disadvantages including high operational costs and frequent downtime.
UV LED systems have the benefit of converting electrical energy into light energy much more efficiently, providing a significant reduction in electricity operating costs. A single UV LED curing system can use as little as 600W of electricity. Cost savings from the reduced electrical consumption alone can be enough to very quickly pay back the investment on the installation of the LED systems.
UV LED curing systems generate a much narrower spectrum of light at specific peak wavelengths, for example 365 nm or 395 nm, with a full width half maximum of only about 20 nm (Figure 2).
A benefit is that the full spectrum of energy produced by the LED is in the effective curing range of the fiber coatings. However, the narrow spectrum of the LED system may also create some challenges when curing fiber optic coatings that have been optimized for the broad spectrum of Hg lamps. It is therefore important to do specific material testing with the LED systems and work closely with the fiber coating supplier to ensure the required physical properties of the coating are achieved.
High-output, air-cooled UV LED curing systems are straightforward to incorporate into a fiber drawing tower. The LED heads are also intrinsically long-lived and have innovative thermal designs with typical operational lifetimes of greater than 40,000 hours. UV LED systems use efficient and reliable constant-current drivers, which require no ballast or magnetron replacement, further reducing downtime and replacement costs compared to lamp-based systems.
UV LED curing systems with advanced LED light-engine design and front-end optics are able to maximize the irradiance at the fiber. The customized lenses produce a highly focused beam (line) of light from the LED to optimize the curing efficiency by maximizing the UV energy onto the very thin strand of fiber. An inherent challenge with LED curing systems is to maintain the high irradiance over working distances due to the divergence of light from the LED source. Custom optics maintain the irradiance almost unchanged from 10 to 18 mm, the typical working distances for the fiber coating application (Figure 3).
Conclusion
New high-irradiance, air-cooled UV LED curing systems are being used to effectively complement or replace current UV lamp technology in the manufacturing of fiber optic cable. The high efficiency, long lifetime, and low electricity consumption of UV LED curing systems significantly reduce the operational cost in this high-speed manufacturing process.
This article was written by Mike Kay, Director of Product Management, OmniCure®, Excelitas Technologies® Corp. (Waltham, MA). For more information, contact Mr. Kay at