NASA's Two-Seater Modular Robotic Vehicle (MRV) Ideal for Urban Environments
The Modular Robotic Vehicle, or MRV, was developed at NASA's Johnson Space Center in order to advance technologies that have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle well-suited for busy urban environments. Just as NASA helped pioneer fly-by-wire technology in aircraft in the 1970s, MRV is an attempt to bring that technology to the ground in modern automobiles. With no mechanical linkages to the propulsion, steering, or brake actuators, the driver of an MRV relies completely on control inputs being converted to electrical signals and then transmitted by wires to the vehicle's motors. A turn of the steering wheel, for example, is recorded by sensors and sent to computers at the rear of the vehicle. These computers interpret that signal and instruct motors at one or all four of the wheels to move at the appropriate rate, causing the vehicle to turn as commanded. Due to a force feedback system in the steering wheel, the driver feels the same resistance and sensations as a typical automobile. MRV is driven by four independent wheel modules called e-corners. Each e-corner consists of a redundant steering actuator, a passive trailing arm suspension, an in-wheel propulsion motor, and a motor-driven friction braking system.