University of North Texas professor Anupama Kaul and her staff are developing new solar cell technology for the Office of Naval Research.

University of North Texas professor Anupama Kaul straddles the line between electrical engineering and materials science, which puts her in the perfect place to develop new solar cell technology for the Office of Naval Research under the Department of Defense.

Kaul who directs the Nanoscale Materials and Devices Lab and the PACCAR Technology Institute intends to utilize emerging perovskite materials that are extremely efficient at absorbing incoming light. The core component of photovoltaic systems is a device called a solar cell. The rigid solar cells many of us are familiar with in commercial solar panels often rely on the highly ordered crystalline structure of materials such as silicon to capture light and convert this to electricity. Many perovskites used in solar cell research are made with solutions, and yet, remarkably, the solution processed materials are still highly absorbing to incoming light. The main advantage of solution processing is that it greatly reduces manufacturing costs of solar cells compared to the sophisticated and expensive infrastructure needed to make them with crystalline materials. Given that there is high potential to reduce manufacturing costs using scalable solution processing routes, it makes perovskites a key contender for realizing low-cost, high-efficiency solar cells.

Although perovskites are highly efficient at converting sun’s light to electricity, their stability and robust operation over time at ambient conditions has been a major challenge in recent years.

“In this ONR sponsored effort, we will be working on several ways to overcome the stability issues of solution-processed perovskite materials by engineering the composition of our conventional three-dimensional perovskites and their close cousin, the two-dimensional perovskites,” Kaul said. “We will also be considering other ways to block water molecules from accessing the hydrophilic or water-loving sites in the perovskites molecules through interface engineering.”

Kaul said another goal of this project is to take special photovoltaic ink and additively manufacture the solar cells with ink-jet printing on flexible, transparent and light-weight substrates. Flexible solar cells can be molded to conform to any surface such as buildings, windows, textiles for wearables and even the roof of a vehicle to provide power.