A hacker can reproduce a circuit on a chip by discovering what key transistors are doing in a circuit — but not if the transistor type is undetectable. Engineers have demonstrated a way to disguise which transistor is which by building them out of a sheet-like material called black phosphorus. This built-in security measure would prevent hackers from getting enough information about the circuit to reverse-engineer it.

Reverse-engineering chips is a common practice both for hackers and companies investigating intellectual property infringement. Researchers also are developing x-ray imaging techniques that wouldn't require actually touching a chip to reverse-engineer it. The approach would increase security on a more fundamental level. How chip manufacturers choose to make this transistor design compatible with their processes would determine the availability of this level of security.

A chip computes using millions of transistors in a circuit. When a voltage is applied, two distinct types of transistors — an N type and a P type — perform a computation. Replicating the chip would begin with identifying these transistors. But because they are distinctly different, the right tools could clearly identify them, allowing a hacker to go backwards, find out what each individual circuit component is doing, and then reproduce the chip.

If these two transistor types appeared identical upon inspection, a hacker wouldn't be able to reproduce a chip by reverse-engineering the circuit. Camouflaging the transistors by fabricating them from a material such as black phosphorus makes it impossible to know which transistor is which. When a voltage toggles the transistors’ type, they appear exactly the same to a hacker. While camouflaging is already a security measure that chip manufacturers use, it is typically done at the circuit level and doesn't attempt to obscure the functionality of individual transistors — leaving the chip potentially vulnerable to reverse-engineering hacking techniques with the right tools. The new camouflaging method would be building a security key into the transistors.

Current camouflaging techniques always require more transistors in order to hide what's going on in the circuit. But hiding the transistor type using a material like black phosphorus — a material as thin as an atom — requires fewer transistors, taking up less space and power in addition to creating a better disguise.

For more information, contact Kayla Wiles at This email address is being protected from spambots. You need JavaScript enabled to view it.; 765-494-2432.



Magazine cover
Tech Briefs Magazine

This article first appeared in the March, 2021 issue of Tech Briefs Magazine (Vol. 45 No. 3).

Read more articles from this issue here.

Read more articles from the archives here.