NASA’s Jet Propulsion Laboratory developed an imaging system suitable for use in a periscope head that yields a non-rotating 360-degree view of the surrounding environment. With conventional periscopes, the instantaneous field of view (FOV) is limited by the entrance aperture, so the user sees an apparent tunnel. Wide-angle coverage has been attempted using multiple imagers but state-of-the-art systems cannot simultaneously provide narrow- and wide-FOV scene visualization.
The imaging system improves upon these systems by using multiple camera arrays, each of which encloses a combination of wide-FOV imagers and narrow-FOV imagers. Because this imaging system displays a full 360-degree seamless FOV and allows the user to select regions for higher-resolution inspection, it can simultaneously carry out a number of diverse visual tasks including surveillance, vision-based navigation, automatic target recognition, and tracking.
The high-resolution complementary metal-oxide semiconductor (CMOS) imaging system comprises two major elements: a sensor head for scene acquisition and a control apparatus with distributed processors and software for device control, data handling, and display.
The sensor head is configured as a cylinder suitable for use on the existing mast of conventional periscopes and has seven decks. Each deck encloses a combination of wide-FOV CMOS imagers and narrow-FOV CMOS imagers. The control apparatus includes four TZI processors, one FFI processor, one host processor, and an optional automatic target recognition (ATR) processor for high-speed, high-precision target detection, identification, and tracking.
The image processing and system-level control electronics are instantiated in six conventional PC104 stacks (one for each processor) and contained in a 10 × 50 × 20-cm housing with a footprint approximately the size of a laptop computer. The display system is a computer workstation hosting an interactive graphical user interface that allows the user to exercise all of the operational states of the system (e.g., search, tracking, display, etc.).
Please contact NASA’s Licensing Concierge at