It is widely believed that Advanced Air Mobility (AAM) is poised to have a significant societal impact in the coming years to move people and cargo more rapidly and efficiently. AAM refers to a new mode of transportation utilizing highly automated airborne vehicles for transporting goods and/or people. The main goals of AAM vehicles are to reduce emissions, to increase connectivity and speed, while helping to reduce traffic congestion. These vehicles can take off and land vertically in designated urban locations called vertiports.
The widespread adoption of AAM concept will necessitate vertiports to be located throughout a geographical region. There is a need to systematically evaluate and quantify which locations are better suited for vertiports and how these vertiports will work together in a network. NASA Ames Research Center has designed a novel technology called VAMOS! that evaluates a variety of factors, e.g., intermodal centers, environmental impact, zoning/land use, to determine the most suitable locations for vertiports in a desired city/region.
VAMOS! enables identifying geographical locations suitable for locating a vertiport or assessing suitability of pre-selected locations. The vertiport assessment system assigns suitability values to these factors based on user-input, and types, including location-based (e.g., proximity to mass transit stations), level-based (e.g., noise levels), characteristic-based (e.g., residential zoning), and time-based (e.g., demand). Based on user input, the system spreads a grid over the geographical area, specifies importance criteria and weights for scaling the impact of the suitability factors, and identifies specific sub-regions as candidate locations.
The candidate sub-regions are shown on a user interface map overlay in a color-coded gradient that reflects the suitability strength for a sub-region. Vertiport locations are selected within these sub-regions. These candidate vertiport locations are refined by establishing feasibility of flight between them.
VAMOS! includes a modeling component and a simulation component. The modeling component assists a user to identify one or more geographical locations at which a vertiport may be physically built. The simulation component of the technology displays, in real-time, the simulated operational behavior of AAM vehicles and in the context of their projected flight paths combined with data dynamically obtained from live sources. These data sources can be from the Federal Aviation Administration (FAA) or other private or public governing bodies, from one or more AAM vehicles in flight, and from weather sources.
Potential users of
this technology include the AAM industry, city planners/departments of transportation, Vertiport developers, as well as electric vertical take off and landing (eVTOL) vehicle manufacturers and designers.
NASA is actively seeking licensees to commercialize this technology. Please contact NASA’s Licensing Concierge at