Daniel Salas demonstrates how the hidden magnetic tag can store a cache of information within an item. (Image: Texas A&M Engineering)

Ensuring security and reliable authentication in manufacturing is a critical national concern, with the U.S. investing billions of dollars in manufacturing. Without such a method readily available, it can be nearly impossible to differentiate an authentic part or component from its counterfeit copy.

Texas A&M University researchers have developed a method of imprinting a hidden magnetic tag, encoded with authentication information, within manufactured hardware during the part fabrication process. The revolutionary process holds the potential to expose counterfeit goods more easily by replacing physical tags — such as barcodes or quick response (QR) codes — with these hidden magnetic tags, which serve as permanent and unique identifiers.

The project, titled “Embedded Information in Additively Manufactured Metals via Composition Gradients for Anti-Counterfeiting and Supply Chain Traceability,” is a faculty partner project supported by the SecureAmerica Institute. It includes researchers from the Department of Materials Science and Engineering and the J. Mike Walker ’66 Department of Mechanical Engineering at Texas A&M. The team recently published its research in the journal Additive Manufacturing.

The team’s custom three-axis magnetic sensor is capable of mapping the surface and revealing the regions where an embedded magnetic tag is accessible. The team is implementing metal additive manufacturing techniques to accomplish its goal of successfully embedding readable magnetic tags into metal parts without compromising on performance or longevity. Researchers used 3D printing to embed these magnetic tags below the surface into nonmagnetic steel hardware.

Other applications for this method include traceability, quality control and more, largely depending on the industry in which it is used.

Once embedded into a nonmagnetic item, the magnetic tag is readable using a magnetic sensor device — such as a smartphone — by scanning near the correct location on the product, allowing the designated information to be accessed by the user.

While other methods exist for imprinting information, they primarily require sophisticated and costly equipment that introduces a barrier to real-world implementation. This is the first time that magnetic properties of the material are being used in this way to introduce information within a nonmagnetic part, specifically for the 3D printing of metals.

To map the magnetic reading of the part, the team created a custom three-axis magnetic sensor capable of mapping the surface and revealing the regions where the embedded magnetic tag was accessible. While the system is more secure than a physical tag or code located on the exterior of an item, the team is still working to improve the complexity of the method’s security.

According to the team, as the project continues, the next steps include developing a more secure method of reading the information, possibly through the implementation of a physical “dual-authentication” requiring the user to apply a specific treatment or stimulus to unlock access to the magnetic tag.

For more information, contact Amy Halbert at This email address is being protected from spambots. You need JavaScript enabled to view it.; 979-458-4243.