A new battery design could help ease integration of renewable energy into the nation’s electrical grid at lower cost, using Earth-abundant metals, according to a study just published in Energy Storage Materials. A research team, led by the Department of Energy’s Pacific Northwest National Laboratory, demonstrated that the new design for a grid energy storage battery built with the low-cost metals sodium and aluminum provides a pathway toward a safer and more scalable stationary energy storage system.
“We showed that this new molten salt battery design has the potential to charge and discharge much faster than other conventional high-temperature sodium batteries, operate at a lower temperature, and maintain an excellent energy storage capacity,” said Guosheng Li, a Materials Scientist at PNNL and the Principal Investigator of the research. “We are getting similar performance with this new sodium-based chemistry at over 212 °F lower temperatures than commercially available high-temperature sodium battery technologies, while using a more Earth-abundant material.”
Imre Gyuk, Director of DOE’s Office of Electricity, Energy Storage Program, which supported this research, noted “This battery technology, which is built with low-cost domestically available materials brings us one step closer toward meeting our nation’s clean energy goals.”
The new sodium-based molten salt battery uses two distinct reactions. The team previously reported a neutral molten salt reaction. The new discovery shows that this neutral molten salt can undergo a further reaction into an acidic molten salt. Crucially, this second acidic reaction mechanism increases the battery’s capacity. Specifically, after 345 charge/discharge cycles at high current, this acidic reaction mechanism retained 82.8 percent of peak charge capacity.
The energy that a battery can deliver in the discharge process is called its specific energy density, which is expressed as “watt hour per kilogram” (Wh/kg). Although the battery is in early-stage or “coin cell” testing, the researchers speculate that it could result in a practical energy density of up to 100 Wh/kg. In comparison, the energy density for lithium-ion batteries used in commercial electronics and electric vehicles is around 170–250 Wh/kg. However, the new sodium-aluminum battery design has the advantage of being inexpensive and easy to produce in the United States from much more abundant materials.
“With optimization, we expect the specific energy density and the life cycle could reach even higher and longer,” added Li.
PNNL scientists collaborated with colleagues at the U.S.-based Nexceris to assemble and test the battery. Nexceris, through their new business Adena Power, supplied their patented solid-state, sodium-based electrolyte to PNNL to test the battery’s performance. This crucial battery component allows the sodium ions to travel from the negative (anode) to the positive (cathode) side of the battery as it charges.
“Our primary goal for this technology is to enable low-cost, daily shifting of solar energy into the electrical grid over a 10- to 24-hour period,” said Vince Sprenkle, a PNNL battery technology expert with more than 30 patented designs for energy storage systems and associated technology. “This is a sweet spot where we can start to think about integrating higher levels of renewables into the electrical grid to provide true grid resiliency from renewable resources such as wind and solar power.”
Sprenkle was part of the team that developed this battery’s new flexible design, which also shifted the battery from a traditional tubular shape to a flat, scalable one that can more easily be stacked and expanded as the technology develops from coin-sized batteries to a larger grid-scale demonstration size. More importantly, this flat cell design allows the cell capacity to be increased by simply using a thicker cathode, which the researchers leveraged in this work to demonstrate a triple capacity cell with sustained discharge of 28.2-hours under laboratory conditions.
Most current battery technologies, including Li-ion batteries, are well suited for short-term energy storage. To meet the demand for 10-plus hours of energy storage will require the development of new, low-cost, safe, and long duration battery concepts beyond current state-of-the-art battery technologies. This research provides a promising lab-scale demonstration toward that goal.
For more information, contact Karyn Hede at