When multiple drones are working together in the same airspace, perhaps spraying pesticide over a field of corn, there’s a risk they might crash into each other. To help avoid these costly crashes, MIT researchers developed a system called MADER in 2020. This multiagent trajectory-planner enables a group of drones to formulate optimal, collision-free trajectories. Each agent broadcasts its trajectory so fellow drones know where it is planning to go. Agents then consider each other’s trajectories when optimizing their own to ensure they don’t collide.
But when the team tested the system on real drones, they found that if a drone doesn’t have up-to-date information on the trajectories of its partners, it might inadvertently select a path that results in a collision. The researchers revamped their system and are now rolling out Robust MADER, a multiagent trajectory planner that generates collision-free trajectories even when communications between agents are delayed.
“MADER worked great in simulations, but it hadn’t been tested in hardware. So, we built a bunch of drones and started flying them. The drones need to talk to each other to share trajectories, but once you start flying, you realize pretty quickly that there are always communication delays that introduce some failures,” said Kota Kondo, an aeronautics and astronautics graduate student.
The algorithm incorporates a delay-check step during which a drone waits a specific amount of time before it commits to a new, optimized trajectory. If it receives additional trajectory information from fellow drones during the delay period, it might abandon its new trajectory and start the optimization process over again.
“If you want to fly safer, you have to be careful, so it is reasonable that if you don’t want to collide with an obstacle, it will take you more time to get to your destination. If you collide with something, no matter how fast you go, it doesn’t really matter because you won’t reach your destination,” Kondo said.
The researchers tested their new approach by running hundreds of simulations in which they artificially introduced communication delays. In each simulation, Robust MADER was 100 percent successful at generating collision-free trajectories, while all the baselines caused crashes.
The researchers also built six drones and two aerial obstacles and tested Robust MADER in a multiagent flight environment. They found that, while using the original version of MADER in this environment would have resulted in seven collisions, Robust MADER did not cause a single crash in any of the hardware experiments.
“Until you actually fly the hardware, you don’t know what might cause a problem. Because we know that there is a difference between simulations and hardware, we made the algorithm robust, so it worked in the actual drones, and seeing that in practice was very rewarding,” Kondo said.
Drones were able to fly 3.4 m per second with Robust MADER, although they had a slightly longer average travel time than some baselines. But no other method was perfectly collision-free in every experiment.
In the future, Kondo and his collaborators want to put Robust MADER to the test outdoors, where many obstacles and types of noise can affect communications. They also want to outfit drones with visual sensors so they can detect other agents or obstacles, predict their movements, and include that information in trajectory optimizations.
For more information, contact Abby Abazorius at