(Left) NASA’s HYPERFIRE performing flow testing with integrated Schlieren flowfield imaging. (Right) Examples of NASA HYPERFIRE test articles, including a Schlieren test article (top) and center-body diffuser test article (bottom). (Image: NASA)

Engineers at NASAs Stennis Space Center have developed the HYdrocarbon Propellants Enabling Reproduction of Flows in Rocket Engines (HYPERFIRE), a sub-scale, non-reacting flow test system. HYPERFIRE uses heated ethane to enable physical simulation of rocket engines powered by a broad range of propellants in an inexpensive, accurate, and simple fashion.

The two main sub-scale, ground-based rocket aerodynamics testing techniques hot-fire testing and cold-flow testing pose a series of tradeoffs. Hot-fire testing is generally much more accurate, but is often burdensome, costly, and requires long lead times due to design work, infrastructure preparation, etc. Cold-flow testing is much less expensive and has a rapid turnaround time, but conventional simulants (e.g., nitrogen, steam) used in cold-flow testing yield less accurate results (i.e., results that are not sufficiently representative of test article performance). While researching methods to optimize such tradeoffs, engineers at NASA’s Stennis Space Center discovered that ethane can be tuned to approximate rocket exhaust plumes generated by several common rocket propellants. This led NASA to develop the HYPERFIRE.

Liquid ethane is transferred to a piston-style run tank, where it is pressurized. Then, the ethane is run through two insulated pebble beds where it is heated, vaporized, and stabilized. Finally, the treated ethane is transferred from the second pebble bed to a small thrust takeout structure, and through the test article. Control of valves and regulators is managed by an onboard computer, accessed via a Lab-VIEW™ interface. The system is mounted on a hurricane-resistant steel frame to enable transportation via forklift.

Heated ethane reproduces the aerodynamics of combustion products at low temperatures relative to alternative testing methods. Thus, test articles can be manufactured using low-cost, low temperature rated, transparent materials (e.g., acrylic). In addition to reducing testing cost, this grants optical access to internal flowfields, enabling advanced diagnostic techniques (e.g., Schlieren imaging, particle image velocimetry) not possible with hot-fire testing and less meaningful with conventional cold-flow testing.

NASA is actively seeking licensees to commercialize this technology. Please contact NASA’s Licensing Concierge at This email address is being protected from spambots. You need JavaScript enabled to view it. or call at 202-358-7432 to initiate licensing discussions. For more information, visit here  .