Latently reactive end caps have been investigated as improved means to increase the thermo-oxidative stability of polyimides of the polymerization of monomeric reactants (PMR) type, which are often used as the matrix resins of high-temperature-resistant composite materials. The present end-cap compounds are candidates to supplant the norbornene end cap (NE) compound that, heretofore, has served to limit molecular weights during oligomerization and, at high temperatures, to form crosslinks that become parts of stable network molecular structures.
Prior attempts to increase thermo-oxidative stability of PMR polyimides were oriented toward formulation of end caps that are inherently more stable than is the nadic end cap. The results were not satisfactory in that the end caps thus formulated adversely affected processability, the nature of the crosslinks, and, in some cases, the thermomechanical properties of the resulting polymers. In the present approach, one does not attempt to formulate end caps that are inherently more stable; instead, one seeks nadic derivatives that exploit one of the modes of the thermo-oxidative degradation of the nadic end cap in such a way as to retard the overall thermo-oxidative degradation of the affected polymers.
Therefore, in the present approach, one seeks to formulate end caps that preserve desirable processing properties of NE while favoring path B strongly, leading to lower weight loss and thus less shrinkage and cracking in the thermally oxidized layer of the affected polymer. Figure 2 depicts a generic molecular structure for a class of end caps that become thermo-oxidatively degraded primarily along path B. In this structure, X maintains its stability during imidization (at a temperature of 200 °C) and cross-linking (at 315 °C). Nevertheless, following these critical steps, X is spontaneously converted, upon aging, to a thermally stable capping group.
This work was done by Mary Ann B. Meador and Aryeh A. Frimer of Glenn Research Center. For further information, access the Technical Support Package (TSP) free on-line at www.nasatech.com/tsp under the Materials category.
Inquiries concerning rights for the commercial use of this invention should be addressed to
NASA Glenn Research Center,
Commercial Technology Office,
Attn: Steve Fedor,
Mail Stop 4–8,
21000 Brookpark Road,
Cleveland, Ohio 44135.
Refer to LEW-16987.