Software was developed that automatically detects minerals that are present in each pixel of a hyperspectral image. An algorithm based on sparse spectral unmixing with Bayesian Positive Source Separation is used to produce mineral abundance maps from hyperspectral images. A “superpixel” segmentation strategy enables efficient unmixing in an interactive session.
Mineralogical search strategies can be categorized as “supervised” or “unsupervised.” Supervised methods use a detection function, developed on previous data by hand or statistical techniques, to identify one or more specific target signals. Purely unsupervised results are not always physically meaningful, and may ignore subtle or localized mineralogy since they aim to minimize reconstruction error over the entire image. This
algorithm offers advantages of both methods, providing meaningful physical interpretations and sensitivity to subtle or unexpected minerals.
This work was done by Rebecca Castano and David R. Thompson of Caltech and Martha Gilmore of Wesleyan University for NASA’s Jet Propulsion Laboratory. For more information, contact
The software used in this innovation is available for commercial licensing. Please contact Daniel Broderick of the California Institute of Technology at danielb@ caltech.edu. Refer to NPO-47038.