In today’s competitive marketplace, medical pump OEMs and their associated design engineering personnel are incorporating strain gauge technologies into both small- and large-volume portable and ambulatory medical infusion pumps, such as insulin and syringe pumps and kidney dialysis machines, as a means of more accurately monitoring and predicting fluid flow rates. The pumps themselves are considered “mission critical” components within these medical device and equipment applications. Their accuracy and reliability remain of the utmost importance for ensuring a constant infusion of vital medication or fluid to the patient.
Successful integration of strain gauge technology has long been field-proven within these applications for greater pump accuracy and extended service life, allowing a pump OEM to add that “extra design edge‚” thereby increasing sales and overall “hit rate” for major contracts.
Understanding the Strain Gauge
The levels of mechanical strain most typically measured with strain gauges are small and precise. Consequently, changes in resistance are also very small and cannot be measured directly with an ohmmeter. The strain gauge must therefore be included in a measurement system where precise determination of the gauge's change in resistance is possible. To do this, a Wheatstone bridge circuit must be created. The first component in the system is formed by the strain gauge itself. It converts mechanical strain into a change in electrical resistance. Both the strain gauge and the measuring circuit are, in the physical sense, passive components. Each strain gauge is then wired into a balanced bridge, consisting of two portions of an equal resistive value, forming a Wheatstone bridge circuit.
HBM, Inc. (Marlborough, MA), a supplier of custom strain gauge sensing technologies for medical devices and equipment, also constructs gauges with 1⁄4- and 1⁄5-bridge designs that require a fixed resistor to complete the Wheatstone bridge. Regardless of bridge configuration, energy must be passed through the gauge to excite the circuit. The circuit must have an auxiliary input energy source, typically external, to obtain a useful signal. A constant electrical voltage is used, though a constant current power source can also be utilized. With a change in strain gauge resistance due to strain, the bridge circuit loses its symmetry and becomes unbalanced. A bridge output voltage is obtained, proportional to the bridge's unbalance. If there is no change in value to the balanced resistance, the electrical output is null or zero. A typical strain gauge on average can measure 1/10,000 micro strain, or enough to detect a small 1 dB vibration across a 10-ft. room. Thus, measurement possibilities have an infinite range. An amplifier must be included in the measurement process to amplify the bridge output voltage to a level suitable for compatibility with indicating instruments. Sometimes amplifiers are designed to give an output proportional to the bridge output in voltage.
Strain Gauge Technology in OEM Medical Pump Designs
For example, at HBM, after a technology briefing and customer identification of applicable regulatory standards, a prototype sensor design is created. This process includes a detailed application analysis and recommendations for the best gauge for intended performance, with varied geometries, holes and cutouts, resistances, threads, and other options. Using finite element analysis (FEA) and other advanced design tools, the appropriate location for the strain gauge is identified and then incorporated into the prototype under specific conditions. As part of this process, the designer will strategically weaken the structural member to allow specific deflections under applied load, enabling the member to mimic the structural behavioral properties of a real-use condition. It is then calibrated and adjusted to perform a perfect, accurate, and repeatable measurement. In-house testing must also be completed in accordance with industry standards. Once a successful prototype is built, tested, and customer-accepted, it is sent to production. A medical pump OEM may opt to self-manufacture finished sensors from a gauged prototype part. However, a strain gauge manufacturer’s in-house expertise allows a customer to have complete assurance in the quality and uniformity of manufactured sensors, tested according to the same rigorous in-house standards as the prototype, while ensuring accuracy, reliability, and timely delivery to meet OEM manufacturing schedules. This mitigation of in-house risk can ultimately save time, cost, and resources.
Successful Strain Gauge Technology Applications
Insulin Pump Fluid Flow
For flow monitoring, an OEM approached HBM to develop a custom strain gauge that was to be used to monitor and control the output of an insulin pump. The pump is designed for on-body continuous patient use and provides insulin incrementally as determined by feedback from an integral blood glucose monitor, while still allowing the patient to override as needed for insulin therapies upon demand. The application environment itself is highly compact and would be subject to the ongoing shock and vibration inputs of movement caused by normal patient use. Thus, a highly rugged, precise, lightweight strain gauge sensing technology was required. For this application, HBM designed and developed a unique subminiature strain gauge sensor assembly, positioned and strategically weakened to allow for desired control of insulin delivery, both manual and automatic. The success and overall reliability of this technology integration has led to the incorporation of strain gauge sensors as an industry standard for many of the industry’s leading insulin pump manufacturers.
Medical Infusion Pumps/Syringe Pumps
Kidney Dialysis Machines
Kidney dialysis machines incorporate strain gauge sensing technologies to ensure uniform fluid flow and fluid circulation of proper rate, proportion, and frequency according to the parameters set by their accompanying electronic controller devices. Timing within this flow measurement system is of critical patient importance, to ensure that as blood leaves the body and is filtered, the recirculation process occurs in a synergistic timeframe. In these applications, strain gauged parts are used to monitor not only medical pumps, but also the weight of canisters of both blood and waste, and flow of hanging intravenous fluids, all with the goal of ensuring consistent therapy delivery. Typically, the electronic controller device managing the dialysis process uses data from these sensors. For this application, HBM designed a variety of custom strain gauge sensor assemblies with accompanying load cell technologies for canister weight and measurement. With this comprehensive technology integration, the OEM was able to ensure that both pumps and canister systems incorporated the necessary checks and balances to ensure a smooth-running dialysis process.
Conclusion
With its relatively simple construction, low cost, and design flexibility, the incorporation of custom strain gauge technologies into OEM medical pump and device applications presents many advantages. The high accuracy and repeatability of the strain gauge and its ability to mimic the behavior of a simfple, repeatable spring allow for seamless integration into a variety of device designs, with minimal to no service requirements. The extensive capability of the strain gauge for modification to meet specific customer requirements facilitates its growing use within the industry.
This article was written by Robert Chevalier, Director of Sensor Sales for HBM, Inc. (Marlborough, MA) and Molly Chamberlin, president & founder of Embassy Global PR & Marketing Communications, LLC (Orchard Park, NY). For more information, Click Here .