The terms Industry 4.0, Big Data, the Internet of Things, and the Digital Factory are being pitched around like a rugby ball, and almost always with a decided lack of clear definition. Let’s set the record straight.


MindSphere, the Siemens Cloud for Industry, is an open operating system for IoT that links physical products and production facilities with digital data.

After German Chancellor Angela Merkel, in conjunction with her ministers of industry and education, ordered a study about the manufacturing environment, the German Academy of Science & Engineering drafted the vision of Industrie 4.0. It was planned as a coordinated initiative among the IT world, universities, and various manufacturing associations designed to reshape industry. It would seek to combine the physical, virtual, IT, and cyber systems, thereby creating a new working environment between the worker and machine. The 4.0 part of the name, incidentally, derives from the fourth industrial revolution — the predecessors being the emergence of mechanization through steam/water power, the impact of electricity on mass production, and the invention of the computer, which led to our modern concepts of IT and automation.

Industry 4.0 (English spelling) has been adopted worldwide as a functional goal in industry -— especially the manufacturing world. Industry 4.0 represents a high point of dynamic achievement, where every company — whether a large OEM, major tier supplier, or smaller job shop — can implement and benefit from the technologies and communications platforms available today.

Without question, Industry 4.0 is less a vision of the future and more a vibrant collaboration among IT, machine builders, industrial automation integrators, and especially motion control suppliers that function at the heart of the machines, simultaneously effecting motion, then gathering and transmitting the relevant data to the appropriate control link in the company’s infrastructure, all at speeds measured in nanoseconds.

To work effectively, this concept requires a standardization of platforms in both communications and languages used.

Integration in Practice

While the Big Data idea overwhelms most managers, technicians, and operators alike, the key is the manipulation of that data in a hierarchy of need, to borrow a term from the psychology world. The mobile device, tablet, cellphone, and now the human machine interface (HMI) screen itself, can all be useful tools in transmitting the most important data from the shop floor to the top floor, or just down the hall to the front office. We say that for a reason, as the small shop owner would be well advised to heed this trend and respond appropriately. That action might take the form of using an integrator to tie all the machine functions and outputs together for that day when his OEM or upper tier customer demands it. In many industrial sectors, that day has already arrived.

The mobile device, tablet, cellphone, and human machine interface (HMI) screen can all be useful tools in transmitting the most important data from the factory floor.

Also, the cybersecurity issue cannot be understated, as we will soon see a shift from the open to the closed cloud for data storage in a factory or shop network. The protection of intellectual property remains paramount, on a global scale, today. To overlook that reality is to compromise the stability and security of your company.

“Remaining competitive” takes on many meanings, depending on your location in the world, but here are some thoughts on how manufacturers can do it better today By the time you finish reading this article, another entrepreneur will have figured out a way to make it happen for his or her company.

Time-to-market reduction is as critical today as ever. Shorter innovation cycles — the result of new product lifecycle management software and services available to companies both big and small — mean the savvy product companies can take their concept and make it fly in just a fraction of the time spent in the past. And by past, we mean compared to about ten years ago.

With the recent, rapid expansion of application-specific integrated circuit (ASIC) capability, much more functionality can be built into a product today, and this means the manufacturing community must be even more flexible and responsive — not merely reactive — than ever before.

With the Big Data impact that has resulted from the above scenario, both machine and component manufacturers are challenged in many ways, not the least of which is the daunting task of deciphering the important or exceptional from the nominal. A quality ERP or MES system can tell you what you need to know, but the keys are the determining factors that make up the inputs to these systems and how their priorities are set.

From the perspective of the motion control and communication platform world — which focuses on the control, generation, or application of movement on everything from a machine tool to a packaging line, from an automotive assembly line to a turnkey book printing facility — a great variety of needs is seen among OEMs as well as end-users in these various segments. All of them require flexibility and often highly customized solutions to their manufacturing or processing challenges. Plus, maintaining high productivity on aging equipment is a constant concern for every company. Do you need to retrofit existing machine or invest in a new one? Are enhanced robotics and transfer mechanisms or more personnel required on the line? Should you focus on better asset management or an entirely new business model when thinking about factories or processing facilities? Today, as the digital factory emerges in all industries and at companies of all sizes, we find ourselves providing answers to these questions, based not only on product, but also software, communication, bus protocol, and other areas of manufacturing expertise.

Utilizing Data to Remain Competitive

Simulation is one digitalization tool that drives shorter innovation cycles, even when highly complex products and large volumes of manufacturing data are involved.

It’s now a popular saying that “data drives utilization.” Using data smartly, however, requires an educated workforce that can take product design and turn it into viable and profitable production for the employer, regardless of the machine, widget, chemistry, or package being produced. In a world dictated by product lifecycle management needs, the correlation among design, production planning, output, and delivery — plus the monitoring of usage and returns in the field — has never been more important, but also never more manageable, given the new tools available from both product and service providers in the market today.

With IT as the link, today’s digital factory will tie the shop floor to the top floor. A word about security: The involvement of suppliers, especially as it pertains to the cybersecurity of Big Data, is a critical factor today. While technology is key, so is the old-fashioned but highly underrated notion of trust. Companies are most productive when they can trust their suppliers, especially those who promote a “defense in depth” approach to cyber-security.