The Savannah River National Laboratory (SRNL) — located in Aiken, SC — is the applied research and development laboratory at the U.S. Department of Energy's (DOE) Savannah River Site (SRS). The laboratory applies state-of-the-art science to provide practical, high-value, cost-effective solutions to complex technical problems. SRNL technologies are used to detect weapons of mass destruction, clean up contaminated groundwater and soil, develop hydrogen as an energy source, support the need for a viable national defense, and safely manage hazardous materials.

The Authenticated Sensor Interface Device reads data, encrypts the information, and distributes it electronically to multiple locations, providing a one-way data pathway that segregates each destination to prevent cross-party data manipulation.

The SRS was constructed to produce the basic materials necessary in the fabrication of nuclear weapons — primarily tritium and plutonium-239. Five reactors were also built in an effort to produce these materials for the nation's defense programs. In support of these efforts, the Savannah River Laboratory was created in 1951 and soon became the second-largest research facility for operator E.I. DuPont de Nemours and Company.

The original Savannah River Laboratory included five main facilities: a main laboratory for process development and experimental research; the Waste Disposal Facility to handle waste created by the laboratory; the Pile Physics laboratory, which contained experimental reactors; and CMX and TNX. CMX was established to determine the treatment needed for cooling water in reactor heat exchangers and TNX was used to determine operational information for separations. The laboratory quickly expanded to include a health physics laboratory, equipment engineering laboratory, and temporary labs such as a fluid pressure bonding laboratory and a mockup of a reactor tank. Since that time, the lab changed its name to the Savannah River Technology Center and is now the Savannah River National Laboratory.

SRNL has evolved to be designated as the only national laboratory for the Department of Energy's Office of Environmental Management and is the nation's only complete nuclear material management facility. Since its earliest days, SRNL has developed technologies to enhance the safety and cost-effectiveness of the Savannah River Site's work with tritium, a radioactive form of hydrogen gas that is a vital component of the nation's nuclear defense. SRNL continues its support of a robust nuclear weapons stockpile through deployment of improved technologies and testing of components to ensure stockpile safety and reliability.

Research includes technologies to separate, stabilize, package, transport, store, account for, and dispose of spent fuel, plutonium, and other nuclear materials to ensure they do not represent a proliferation or environmental risk and to support global threat reduction. SRNL provides support for homeland security initiatives in fields that include emergency response, urban search and rescue, border protection, and law enforcement support.

Homeland Security

The Additive Manufacturing Unique Serialization methodology embeds a unique serialization structure within an additive-manufactured part.

Historically, the laboratory's experts have developed highly sensitive analytical equipment and techniques to measure the environmental impact of the Savannah River Site's radiological operations. That same expertise goes into the development of technologies and techniques for detecting and identifying chemical, biological, and radiological materials to address homeland security goals. SRNL's expertise in robotics, surveillance systems, and specialty equipment is being applied to a broad range of needs, from vision systems for use in search and rescue missions, to low-cost robots for disabling improvised explosive devices, to medical devices for first responder physicians.

Successful technologies in homeland security include the Intelligent Personal Radiation Locator, the Standoff Radiation Detector System, the CRAWDAD boat-mounted radiation detector test, and the DOLPHIN small vessel radiation detector test.

In collaboration with Hadron Technologies, SRNL has developed a microwave system to support gas sample analysis as part of the SRS national defense mission. Laboratory experimentation has shown that the new form of hybrid microwave is capable of performing functions that traditional microwave systems could not achieve. The system achieves extremely high temperatures by enabling materials that usually do not react to absorb microwave energy and rapidly heat up. Metals — which normally cannot be introduced into a microwave system — not only can be treated in the system but are actually used to help increase the temperature of the lower chamber, enabling faster degradation of waste materials. Equipment using these technologies could destroy a wide variety of substances ranging from medical wastes to harmful viruses and drugs such as methamphetamine, while still allowing for DNA analysis of the destroyed material.

SRNL has extensive experience in supporting the intelligence needs of the United States. SRNL employs its expertise in nuclear technologies, Weapons of Mass Destruction (WMD) signatures, and regional security analysis to examine foreign programs in support of DOE, the intelligence community, and other U.S. government organizations.

Forensics and Law Enforcement

In 2010, the Federal Bureau of Investigation (FBI) and SRNL opened a new laboratory for the forensic examination of radiological material and associated evidence, located at SRNL. These laboratory facilities provide the FBI with a flexible radiological containment laboratory where experts can safely conduct forensic examinations on items of evidence associated with radiological material. SRNL conducted several years of development to adapt FBI forensic protocols for application in radiological labs. SRNL also provides radiological crime scene training to FBI agents from around the country who are members of the FBI's Hazardous Materials Response Teams and provides training for the FBI Laboratory's Hazardous Evidence Analysis Team.

Radiation detection and the creation of new technology is vital to the security of public and private interests. From government facilities, to sports venues and utilities, the need for technology detection is paramount. SRNL offers numerous NIST-traceable sources, specialized nuclear materials, and calibration equipment and assists in the development and testing of that equipment.

Atmospheric Technologies Group

The Atmospheric Technologies Group (ATG) at SRNL supports a comprehensive program of applied atmospheric research, technology development, and operational support for the SRS and other federal agencies involved in national and energy security. The general focus encompasses emergency response, international nuclear nonproliferation, climate change, and renewable energy. Specific areas of current interest are:

  • Technologies leading to improved prediction and assessment of the transport of air- and water-borne contaminants through novel applications of model ensembles and robust methods for synthesizing predictive models and field measurements.

  • Regional to local assessments of long-term climate change to predict potential vulnerabilities to future industrial activity or identify/predict weather phenomena that trigger adverse ecosystem response.

  • Techniques to bridge gaps between model predictions and meteorological observations leading to improved predictions of the contribution of renewable energy generation to the electrical grid.

ATG conducts a comprehensive meteorological monitoring program that includes a local network of 12 meteorological towers with extensive databases. Two of these towers are located in industrial corridors of Augusta, GA as part of mutual aid agreements with local county emergency management agencies. These data are linked to a suite of environmental transport models for predicting the potential hazards of routine or unplanned contaminant releases to workers or the public. Additional assets managed by ATG include a tower facility near the SRS equipped for meteorological and trace gas measurements at multiple levels up to 329 meters, the 30-m Aiken Site Ameriflux tower equipped for measurements of carbon and water vapor flux within a forested canopy, and a vertically pointing lidar (ceilometer) for detecting clouds and aerosols in the atmospheric boundary layer.

Instrumentation that can be deployed for intensive short-term data collection includes SODAR, tethered and free release sondes, a portable in-situ meteorological station, and a variety of specialized radiometers. The result is an extensive observational resource to support research requiring thorough characterization of the atmospheric boundary layer over a large forested landscape. Capabilities include:

  • Mesoscale meteorological modeling, hydrological modeling, contaminant transport, and fate modeling and assessment on regional to local scales.

  • Meteorological instrumentation, real-time data collection systems, and database management.

  • Design and execution of data collection and analysis objectives for field experiments involving tracer releases.

  • Emergency response hazard consequence modeling and assessments.

  • Weather forecasting, climate characterizations, and severe weather phenomena risk assessments.

  • Regulatory air quality modeling and assessments.

  • Climate predictions and long-term vulnerability assessments.