2016 Automotive & Transportation Category Winner

Nexcel Oil Cell

Castrol innoVentures Nexcel Team
Castrol innoVentures Oxford, United Kingdom
The Nexcel sealed oil cell allows oil to be changed more than 13 times faster than with a conventional oil change.

The Nexcel sealed oil cell comes complete with high-quality oil, an integrated oil filter, and an electronic tag to ensure the right match for every engine. After every quick and efficient oil change — when the service center fits a fresh Nexcel cell — the used cell is collected, recycled, and reused up to five times; a process that includes the used oil being re-refined back into lubricants. Nexcel claims the system can compete on a carbon-savings basis with conventional environmental technologies.

The company is focusing on linking its system with hybrid drivetrains to achieve significant environmental gains. As engine efficiency improves, the warm-up period becomes proportionately more significant for emissions. By reducing the volume of oil in the engine sump during cold start, the Nexcel system enables faster warm-up.

With the oil filter housed in the Nexcel cell, vehicle designers would no longer be required to provide space around the engine block for conventional oil filter replacement.

Nexcel is already used on the Aston Martin Vulcan and Vantage GT8. Other manufacturers are integrating it into future production models. The company expects low-volume manufacturers to be utilizing Nexcel by 2020; the first mass-market passenger car systems should be on the road soon after.

https://contest.techbriefs.com/2016/entries/7060


2017 Medical Category Winner

Arterial Everter

Jeff Plott, Dr. Adeyiza Momoh, Dr. Ian Sando, Brendan McCracken, Dr. Mohammed Tiba, Dr. Kevin Ward, Dr. Jeffrey Kozlow, Dr. Paul Cederna
University of Michigan Ann Arbor, MI
The Arterial Everter was licensed to Baxter International to market and distribute.

Developed by a team at the University of Michigan, the Arterial Everter is a surgical device that simplifies connecting arteries in complicated procedures such as reconstructing a breast after a mastectomy, or repairing a severely injured leg after a car accident. It can reduce the time it takes to connect arteries from 20 minutes to five minutes.

The device resembles a thin silicone pen with a flexible steel spine and works as an accessory to a currently available tool for connecting blood vessels, the GEM Microvascular Anastomotic Coupler system made by Synovis Micro Companies Alliance, a wholly owned subsidiary of Baxter International.

The University of Michigan and Baxter signed a licensing agreement for the expected future marketing and distribution of the everter device globally. Before the device can be used in surgeries, Baxter must obtain FDA and other approvals.

https://contest.techbriefs.com/2017/entries/8162


2015 Medical Category Winner

Smart X-ray Source

Mark Eaton, Dr. Ronald Hellmer, Dr. Shuo Cheng, Hugo Leon, Dr. Leif Fredin
Stellarray Austin, TX
Stellarray's system can be used not only for traditional 2D X-ray imaging but also for 3D computed tomography.

The Smart X-ray Source combines classical x-ray physics and flat-panel display technology for a new x-ray source.

Smart means the source has a large array of x-ray spots that can be addressed electronically in whatever sequence, intensity, and pattern is programmed into the control computer.

Since their Create the Future contest win, Stellarray developed a radiographic medical imaging system for NASA that can be carried into space. It can be used not only for 2D x-ray imaging but also for 3D computed tomography. The system will meet imaging needs for musculoskeletal, head and neck, soft tissue, dental, and other conditions.

https://contest.techbriefs.com/2015/entries/6206


2015 Electronics Category Winner

Fiber Optic Sensing System

Lance Richards, Patrick Chan, Philip Hamory, Allen Parker, Anthony Piazza, Dr. William Ko
NASA Armstrong Flight Research Center Edwards, CA
Developed for aeronautics, FOSS could solve challenges faced by medical, power, and automotive industries.

A Fiber Optic Sensing System (FOSS) developed for aeronautics research has the potential to solve a number of technical challenges for industries as diverse as medical, power, and automotive.

In the past, collecting aerodynamic data from research aircraft and transmitting it required infrastructure including miles of wires and bulky sensors. Armstrong researchers developed a simpler, lightweight solution for the system's electronics that started out as nearly table-sized, but soon will fit in a container the size of a box of cookies.

Various NASA centers are partnering on composite over-wrapped pressure vessel (COPV) tanks from Space X that are instrumented with FOSS, which would provide real-time data on strain and temperature in the unforgiving environment of cryogenic liquids and extreme pressures. Oil, gas, dairy, and other industries have inquired about a system that can help with a number of different applications.

https://contest.techbriefs.com/2015/entries/6150


2016 Consumer Products Category Winner

mifold Grab-and-Go Booster Seat

Jon Sumroy
Carfoldio Ltd. Houston, TX
The mifold Grab-and-Go booster seat is sold in a number of retail outlets.

The mifold Grab-and-Go booster seat for children aged 412 is more than ten times smaller than a regular booster seat and just as safe. mifold secures the seat-belt in the correct position on the hips and shoulder by holding the seatbelt down at three points. In a collision, the child is protected in the same way as they would be with a conventional booster seat.

Because mifold doesn't need to lift the child, it doesn't need to be big and bulky. It is flat and can be folded to create a compact, portable package measuring 10 × 5 × 2”. The product is built with 6061 aircraft-grade aluminum and Dupont™ Delrin® 100ST, a super-tough plastic polymer with excellent impact resistance. The entire seat weighs just 1.6 pounds.

The Create the Future award was the first award the mifold grab-and-go received; it has since won 15 other international innovation, design, and consumer awards.

Today, there is a range of mifold grab-and-go booster seats: the original mifold Sport (sold exclusively at Nordstrom), and a B2B version called mifold One (a non-folding seat targeting taxi fleets that need compact storage but not the same portability).

The seats are now sold on Amazon, and in Target, BuyBuy Baby, Kohl's, and Walmart stores. Outside the USA, there are distributors covering 50 markets. In total, nearly three-quarters of a million seats have been shipped worldwide.

A crowdfunding campaign was recently completed for a new product: hifold by mifold. The portable, adjustable, high-back booster is three times smaller than a regular car booster seat. It folds down to fit in a small carry bag and has four different adjustable zones to fit as the child grows. The company is currently taking pre-orders for the hifold.

https://contest.techbriefs.com/2016/entries/6414


2014 Aerospace & Defense Category Winner

The Polariton Interferometer: A Novel Inertial Navigation System

Dr. Frederick Moxley
The Quantum Widget Company Toronto, ON, Canada
The Polariton Interferometer enables inertial navigation where GPS fails.

GPS navigation technology relies on a combination of signals from a satellite and ground station network. This is problematic in aerospace and defense, as GPS signal jamming is prevalent.

The Polariton Interferometer provides measurement sensitivities far superior to optical technologies, enabling aerospace and defense vehicles to operate completely independent of GPS satellites and ground station networks.

The performance capability is independent of scale, and the system is readily manufactured as a photonic integrated circuit on a microchip smaller than a dime. These microchips contain discrete optical components that are made using a direct laser-writing technique.

In 2016, Dr. Moxley formed The Quantum Widget Company (QuidgetCo), a quantum machine-learning company that specializes in quantum computing, quantum many-body systems, and quantum information processing.

https://contest.techbriefs.com/2014/entries/5020