In 1807, President Thomas Jefferson founded the U.S. Coast and Geodetic Survey to provide nautical charts to the maritime community for safe passage into American ports and along the coastline. The Weather Bureau was founded in 1870 and one year later, the U.S. Commission of Fish and Fisheries was founded. Individually, these organizations were America's first physical science agency, America's first agency dedicated specifically to the atmospheric sciences, and America's first conservation agency.

The three agencies were brought together in 1970 with the establishment of NOAA, an agency within the Department of Commerce.

From daily weather forecasts, severe storm warnings, and climate monitoring to fisheries management, coastal restoration, and supporting marine commerce, NOAA's products and services support economic vitality and affect more than one-third of America's gross domestic product. NOAA scientists use cutting-edge research and high-tech instrumentation to provide citizens, planners, emergency managers, and other decision-makers with reliable information they need when they need it.

Science at NOAA is the systematic study of the structure and behavior of the ocean, atmosphere, and related ecosystems; integration of research and analysis; observations and monitoring; and environmental modeling. NOAA science includes discoveries and new understanding of the oceans and atmosphere and the application of this understanding to such issues as the causes and consequences of climate change, the physical dynamics of high-impact weather events, the dynamics of complex ecosystems and biodiversity, and the ability to model and predict the future states of these systems.

NOAA's core mission functions require satellite systems, ships, buoys, aircraft, research facilities, high-performance computing, and information management and distribution systems. The agency provides research-to-application capabilities that can recognize and apply new understanding to questions, develop research products and methods, and apply emerging science and technology to user needs.

NOAA's National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the United States, its territories, adjacent waters, and ocean areas. Each year, NWS collects 76 billion observations and issues approximately 1.5 million forecasts and 50,000 warnings. NWS has played a key role in protecting American lives and properties for over a century.


Joseph Cione, a NOAA meteorologist, holds the Coyote, a small drone that has flown in three hurricanes. The data collected can help scientists understand where the storm's strongest winds are, the radius of maximum winds, and other variables like temperature, moisture, and sea-level pressure that all affect storm strength. (Credit: Joe Cione/NOAA AOML)

NOAA's research laboratories conduct an integrated program of research, technology development, and services to improve the understanding of Earth's atmosphere, oceans, and inland waters and to describe and predict changes occurring to them. The laboratories and their field stations are located across the country and around the world.

Pacific Marine Environmental Laboratory (PMEL)

NOAA's PMEL makes critical observations and conducts groundbreaking research to advance knowledge of the global ocean and its interactions with the Earth, atmosphere, ecosystems, and climate. Key research areas include ocean acidification, tsunami detection and forecasting, hydrothermal vent systems, fisheries oceanography, and long-term climate monitoring and analysis.

Engineers at PMEL support field systems with engineering services and foster technological innovation by pushing the limits of ocean and atmospheric observing platforms and sensors that advance NOAA research and operations.

The Innovative Technology for Arctic Exploration (ITAE) program conceptualizes and builds effective research equipment for the assessment of the Arctic environment and ecosystem with the operation of high-resolution sensors on autonomous platforms near sea ice. PMEL has produced important data handling tools — such as the Scientific Graphics Toolkit, Ferret, and the Live Access Server — that are used extensively by the ocean research community.

Earth System Research Laboratory (ESRL)

NOAA's compact, inexpensive sea temperature sensor measures sea temperature across multiple sites for the global Opuhala Coral Health project.

The ESRL pursues a broad and comprehensive understanding of the many physical, chemical, and biological processes that comprise the Earth system to better predict their behavior. Scientists study atmospheric and other dynamic processes that affect air quality, weather, and climate variability. ESRL researchers monitor the atmosphere, investigate the physical and chemical processes that comprise the Earth system, and integrate those findings into environmental information products.

ESRL's work improves critical weather and forecasting tools for the public and private sectors, from hourly forecasts, drought and air quality predictions, to international science assessments with policy-relevant findings.

National Severe Storms Laboratory (NSSL)

The miniature Scanning Aerosol Sun Photometer (miniSASP) measures vertical profile of atmospheric aerosols, which can affect air quality and exert direct and indirect effects on climate. The upward-looking radiometer (ULR) assembly with miniSASP is shown. For scale, the dome is about 5 cm in diameter. (Photo: D. Murphy, NOAA)

The NSSL provides accurate and timely forecasts and warnings of hazardous weather events through research to advance the understanding of weather processes, research to improve forecasting and warning techniques, and development of operational applications. NSSL transfers new scientific techniques and applications to the National Weather Service.

NSSL is NOAA's primary radar laboratory. From the original WSR-57 research project to Doppler radar, NEXRAD, and now dual-polarized and phased array radars, NSSL research has made radar one of the most valuable tools available to a forecaster. NSSL researchers work to develop new weather and water-related applications, and water resource management tools help NWS forecasters produce more accurate and timely warnings of flood events.

Atlantic Oceanographic and Meteorological Laboratory (AOML)

The AOML conducts research to understand the physical, chemical, and biological characteristics and processes of the ocean and the atmosphere, both separately and as a coupled system. The research portfolio encompasses ocean, coastal, and atmospheric studies, focusing on improving the prediction of hurricanes, learning about the ocean's role in climate and extreme weather events, understanding the global impacts of ocean acidification and pollution on coastal ecosystems and providing insights to help resource managers.