A team of scientists from the National University of Singapore (NUS) has found that blue light emitting diodes (LEDs) have strong antibacterial effects on major foodborne pathogens, and are most effective when in cold temperatures (between 4°C and 15°C) and mildly acidic conditions of around pH 4.5. This opens up novel possibilities of using blue LEDs as a chemical-free food preservation method. Acidic foods such as fresh-cut fruits and ready-to- eat meat can be preserved under blue LEDs in combination with chilling temperatures without requiring further chemical treatments that are commonly needed for food preservation.

Blue LEDs can kill off pathogens most effectively in cold temperatures and acidic conditions. (Photo: Alexofdodd at en.wikipedia)

While LEDs are most commonly known as an energy-saving light source, they have also been known to have an antibacterial effect. Bacterial cells contain light sensitive compounds that adsorb light in the visible region of the electromagnetic spectrum (400-430 nm), which is mainly blue LED light. Exposure to illumination from blue LED light can start off a process within the cells that ultimately causes the cells to die. Existing studies on the antibacterial effect of LED illumination mostly evaluated its efficacy by adding photosensitisers to the food samples, or by using very close distance of less than 2 cm between the bacterial suspension and LED light source. These conditions would not be viable for application on food preservation.

The NUS team, led by Assistant Professor Yuk Hyun-Gyun, from the Food Science and Technology Programme at the NUS Faculty of Science, is the first so far to show that factors such as temperature and pH levels, which are typically related to food products, can affect the antibacterial effect of LEDs. In this study, the team placed three major foodborne pathogens – Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium – under blue LED illumination, and varied the pH conditions from acidic to alkaline. The team found that higher bacterial inactivation was achieved at acidic and alkaline pH conditions than when neutral. In particular, acidic conditions were more detrimental than alkaline conditions for L. monocytogenes. For E. coli O157:H7 and S. Typhimurium, alkaline conditions were most detrimental, although acidic conditions were also sufficiently effective in deactivating them.

A previous study in 2013 by the same team had also looked at the effect of temperature on blue LED’s ability to deactivate bacterial cells and found the antibacterial effect to be most enhanced in chilling temperatures.

The team’s findings can potentially be applied to food chillers or cold supply chain to preserve fresh-cut fruits, ready-to-eat seafood such as sushi and smoked salmon, as well as chilled meat products. This technology can also be useful for retail settings, spanning hawker centers, food courts to supermarkets, as well as for food suppliers.

Source