The MagnetoSpheric Multiscale (MMS) mission had a requirement to use the Remote Memory Access Protocol (RMAP) over its SpaceWire network. At the time, no known intellectual property (IP) cores were available for purchase. Additionally, MMS preferred to implement the RMAP functionality with control over the lowlevel details of the design. For example, not all the RMAP standard functionality was needed, and it was desired to implement only the portions of the RMAP protocol that were needed. RMAP functionality had been previously implemented in commercial off-the-shelf (COTS) products, but the IP core was not available for purchase.

The RMAP Target IP core is a VHDL (VHSIC Hardware Description Language) description of a digital logic design suitable for implementation in an FPGA (field-programmable gate array) or ASIC (application- specific integrated circuit) that parses SpaceWire packets that conform to the RMAP standard. The RMAP packet protocol allows a network host to access and control a target device using address mapping. This capability allows SpaceWire devices to be managed in a standardized way that simplifies the hardware design of the device, as well as the development of the software that controls the device.

The RMAP Target IP core has some features that are unique and not specified in the RMAP standard. One such feature is the ability to automatically abort transactions if the back-end logic does not respond to read/write requests within a predefined time. When a request times out, the RMAP Target IP core automatically retracts the request and returns a command response with an appropriate status in the response packet’s header. Another such feature is the ability to control the SpaceWire node or router using RMAP transactions in the extended address range. This allows the SpaceWire network host to manage the SpaceWire network elements using RMAP packets, which reduces the number of protocols that the network host needs to support.

This work was done by Omar Haddad of Goddard Space Flight Center. GSC-16467-1